(理)已知⊙:和定点,由⊙外一点向⊙引切线,切点为,且满足.
(1)求实数间满足的等量关系;
(2)求线段长的最小值;
(3)若以为圆心所作的⊙与⊙有公共点,试求半径取最小值时的⊙方程.
(1);(2);(3)
解析试题分析:(1)连接OP,OQ,
则,在中,,且 ,结合两点之间距离公式可得关于的等式;(2)在中,,是含有的二元函数,结合(1)可得关于的一元函数,求其最小值即可;(3)方法一:因为⊙与⊙有公共点,则得圆心距和其半径的关系即,要求半径的最小值,只需最小,将用两点之间距离公式表示出来,求其最小值并求取的最小值时,得⊙的圆心,进而求出圆的标准方程;方法二:由(1)知⊙的圆心的轨迹方程为:,过点作垂直于的垂线,垂足为,当两圆外切且以为圆心时,半径最小,此时,两条直线求交点确定圆心,从而求出圆的 标准方程.
试题解析:(1)连为切点,,由勾股定理有,又由已知,故.即:,化简得实数a、b间满足的等量关系为:;(2)由,得,=
,故当时,即线段PQ长的最小值为 ;
(3)方法一:设圆P的半径为,圆P与圆O有公共点,圆O的半径为1,即且,而,故当时,此时, ,,得半径取最小值时圆P的方程为.
方法二:圆与圆有公共点,圆 半径最小时为与圆外切(取小者)的情形,而这些半径的最小值为圆心到直线的距离减去1,圆心为过原点与垂直的直线 与的交点, ,又:x-2y = 0,解方程组,得.即,∴所求圆方程为.
考点:1、两点之间距离公式;2、两圆的位置关系;3、函数的最值.
科目:高中数学 来源: 题型:解答题
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,分别求满足下列条件的a、b的值.
(1) 直线l1过点(-3,-1),且l1⊥l2;
(2) 直线l1与l2平行,且坐标原点到l1、l2的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点.
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,.当最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点,的坐标分别是,.直线,相交于点,且它们的斜率之积为.
(1)求点的轨迹的方程;
(2)若过点的两直线和与轨迹都只有一个交点,且,求的值;
(3)在轴上是否存在两个定点,,使得点到点的距离与到点的距离的比恒为,若存在,求出定点,;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com