精英家教网 > 高中数学 > 题目详情
5.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为(  )
A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0

分析 由题意画出图形,可得点(3,1)在圆(x-1)2+y2=r2上,求出圆心与切点连线的斜率,再由直线方程的点斜式得答案.

解答 解:如图,
∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,
∴点(3,1)在圆(x-1)2+y2=r2上,
连接圆心与切点连线的斜率为k=$\frac{1-0}{3-1}=\frac{1}{2}$,
∴切线的斜率为-2,
则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.
故选:B.

点评 本题考查圆的切线方程,考查直线与圆的位置关系,训练了直线方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若集合A={x|-6≤x<0},B={x|x≥1或x<-2},则A∩B=(  )
A.{x|-6≤x<1}B.{x|x<-6或x>1}C.{x|x<-2或x≥1}D.{x|-6≤x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(sinx,sin(x-$\frac{π}{6}$)),$\overrightarrow{b}$=(sinx,cos(x+$\frac{π}{3}$)),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[-$\frac{π}{3}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0)距离之差为8,则称曲线C为“好曲线”.以下曲线不是“好曲线”的为②.
①x+y=5; ②x2+y2=9 ③$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 ④x2=16y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆M:(x-2)2+(y-1)2=5,则过点O(0,0)的圆M的切线方程为y=-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.
(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小(只需直接写出结果);
(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从2,0,1,6四个数中随机取两个数组成一个两位数,并要求所取得较大的数为十位数字,较小的数为个位数字,则所组成的两位数是奇数的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知第一象限的点M在椭圆4x2+9y2=324上,且M到椭圆右准线的距离为4$\sqrt{5}$.
(1)求点M的坐标;
(2)如果点N在椭圆上,且线段MN经过椭圆的右焦点,求|MN|的值.

查看答案和解析>>

同步练习册答案