精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,若在区间上的最小值为-2,其中是自然对数的底数,求实数的取值范围;

【答案】(1).

(2).

【解析】分析:(1)求出,由 的值可得切点坐标,由的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间根据单调性求得函数最小值,令所求最小值等于,排除不合题意的的取值,即可求得到符合题意实数的取值范围.

详解(Ⅰ)当时,

因为,所以切线方程是

(Ⅱ)函数的定义域是

时,

时,所以上的最小值是,满足条件,于是

②当,即时,上的最小,即时,上单调递增

最小值,不合题意;

③当,即时,上单调递减,所以上的最小值是,不合题意.

综上所述有,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

满意

一般

不满意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x个月的利润 (单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x个月的当月利润率 ,例如:
(1)求g(10);
(2)求第x个月的当月利润率g(x);
(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者和4名女志愿者,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示。

(1)求接受甲种心理暗示的志愿者中包含但不包含的概率;

(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的5个样本点,数值如下表:

0.25

0.5

1

2

4

16

12

5

2

1

(1)根据散点图判断,哪一个适宜作为关于的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果试建立之间的回归方程.(注意计算结果保留整数)

(3)由(2)中所得设z=+,试求z的最小值。

参考数据及公式如下:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上,为坐标原点

(1)求椭圆的标准方程

(2)过椭圆上异于其顶点的任一点,作圆的切线,切点分别为不在坐标轴上),若直线的横纵截距分别为,求证:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的极小值;

(2)若函数个零点,求实数的取值范围;

(3)在(2)的条件下,若函数的三个零点分别为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-ABC中,AB=BC=,BB=2,ABC=90,E、F分别为AA、CB的中点,沿棱柱的表面从EF两点的最短路径的长度为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},则A∩B=(
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}

查看答案和解析>>

同步练习册答案