【题目】在直三棱柱ABC-ABC中,AB=BC=,BB=2,ABC=90,E、F分别为AA、CB的中点,沿棱柱的表面从E到F两点的最短路径的长度为_______
【答案】
【解析】分析:分类讨论,若把面ABA1B1 和面B1C1BC展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度.
若把把面ABA1B1 和面A1B1C1展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度
若把把面ACC1A1和面A1B1C1展开在同一个面内,构造直角三角形,由勾股定理得 EF 的长度.
以上求出的EF 的长度的最小值即为所求.
详解:直三棱柱底面为等腰直角三角形,①若把面ABA1B1 和面B1C1CB展开在同一个平面内,
线段EF就在直角三角形A1EF中,由勾股定理得 EF===.
②若把把面ABA1B1 和面A1B1C1展开在同一个平面内,设BB1的中点为G,在直角三角形EFG中,
由勾股定理得 EF===.
③若把把面ACC1A1和面A1B1C1展开在同一个面内,过F作与CC1行的直线,过E作与AC平行的直线,
所作的两线交与点H,则EF就在直角三角形EFH中,
由勾股定理得 EF===,
综上,从E到F两点的最短路径的长度为,
故答案为:.
科目:高中数学 来源: 题型:
【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N) (I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求满足下列条件的a,b值.
(Ⅰ)l1⊥l2且l1过点(﹣3,﹣1);
(Ⅱ)l1∥l2且原点到这两直线的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数的一条对称轴是;
②函数的图象关于点(,0)对称;
③正弦函数在第一象限为增函数
④若,则,其中
以上四个命题中正确的有 (填写正确命题前面的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga( ﹣mx)在R上为奇函数,a>1,m>0. (Ⅰ)求实数m的值;
(Ⅱ)指出函数f(x)的单调性.(不需要证明)
(Ⅲ)设对任意x∈R,都有f( cosx+2t+5)+f( sinx﹣t2)≤0;是否存在a的值,使g(t)=a ﹣2t+1最小值为﹣ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥的体积为,每个顶点都在半径为的球面上,球心在此三棱锥内部,且,点为线段的中点,过点作球的截面,则所得截面圆面积的最小值是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于十进制中的逢10进1,十二进制的进位原则是逢12进1,采用数字0,1,2,…,9和字母M,N作为计数符号,这些符号与十进制的数字对应关系如下表:
十二进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | M | N |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
例如,因为563=3×122+10×12+11,所以十进制中的563在十二进制中被表示为3MN(12).那么十进制中的2008在十二进制中被表示为( )
A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com