精英家教网 > 高中数学 > 题目详情
3.化简:$\frac{a-b}{\sqrt{a}-\sqrt{b}}$-$\frac{a\sqrt{a}-b\sqrt{b}}{a+\sqrt{ab}+b}$.

分析 化简$\frac{a-b}{\sqrt{a}-\sqrt{b}}$-$\frac{a\sqrt{a}-b\sqrt{b}}{a+\sqrt{ab}+b}$=$\frac{(\sqrt{a})^{2}-(\sqrt{b})^{2}}{\sqrt{a}-\sqrt{b}}$-$\frac{(\sqrt{a})^{3}-(\sqrt{b})^{3}}{(\sqrt{a})^{2}+\sqrt{a}\sqrt{b}+(\sqrt{b})^{2}}$,利用平方差公式与立方差公式化简可得.

解答 解:$\frac{a-b}{\sqrt{a}-\sqrt{b}}$-$\frac{a\sqrt{a}-b\sqrt{b}}{a+\sqrt{ab}+b}$
=$\frac{(\sqrt{a})^{2}-(\sqrt{b})^{2}}{\sqrt{a}-\sqrt{b}}$-$\frac{(\sqrt{a})^{3}-(\sqrt{b})^{3}}{(\sqrt{a})^{2}+\sqrt{a}\sqrt{b}+(\sqrt{b})^{2}}$
=($\sqrt{a}$+$\sqrt{b}$)-($\sqrt{a}$-$\sqrt{b}$)
=2$\sqrt{b}$.

点评 本题考查了平方差公式与立方差公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为1,点M在$\overline{A{C}_{1}}$上且$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{M{C}_{1}}$,N为B1B的中点,则|$\overrightarrow{MN}$|为(  )
A.$\frac{\sqrt{15}}{6}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{21}}{6}$D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(72004+36)818的十位数字是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{x}{{x}^{2}-2x+4}$
(1)解不等式f(x)≤$\frac{1}{3}$;
(2)当x>0时,若f(x)≤a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)满足f(x+y)=f(x)+f(y),f($\frac{1}{3}$)=$\frac{3}{2}$,且x<0时,f(x)>0.
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性;
(3)解不等式f(x)+f(x-1)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{a}{{a}^{2}-1}$(ax-$\frac{1}{{a}^{x}}$)(a>1,a≠1),问:在y=f(x)的图象上是否存在两个不同点,使过两点的直线与x轴平行?若存在,证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:?x∈R,使4x+2x+1+m=0,若¬P是假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|x2-3x-4≤0},非空集合B={x|(x-b)(x-b-2)<0},且A∪B=A,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求8sin210°+$\frac{1}{sin10°}$的值.

查看答案和解析>>

同步练习册答案