精英家教网 > 高中数学 > 题目详情
3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,P为其右支上一点,连接PF1交y轴于点Q,若△PQF2为等边三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 设|PF2|=x,则|PF1|=2x,求出x=2a,在△PF1F2中,由余弦定理可得c,a的关系,即可求出双曲线C的离心率.

解答 解:设|PF2|=x,则|PF1|=2x,
∴|PF1|-|PF2|=x=2a,
在△PF1F2中,由余弦定理可得4c2=16a2+4a2-2×$4a×2a×\frac{1}{2}$,
∴c=$\sqrt{3}$a,
∴$e=\frac{c}{a}$=$\sqrt{3}$.
故选B.

点评 本题考查双曲线C的离心率,考查双曲线的定义,考查余弦定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{sinπ{x}^{2},-1≤x≤0}\\{{e}^{x-1},x>0}\end{array}\right.$,则满足f(x0)=1的实数x0的值为1或$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁UN)={x|-2≤x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)化简:$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
(2)若$α+β=\frac{3π}{4}$,求(1-tanα)(1-tanβ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,PD=AD=AB=1,DC=2.
(1)求证:BC⊥平面PBD;
(2)求二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知二面角α-l-β的大小为120°,点B,C在棱l上,A∈α,D∈β,AB⊥l,CD⊥l,AB=2,BC=1,CD=3,则AD的长为(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于函数$y=sin(x+\frac{π}{8})cos(x+\frac{π}{8})$,以下四个结论中错误的是(  )
A.最小正周期为π
B.图象可由$y=\frac{1}{2}sinx$先把图象上各点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再把所得图象向左平移$\frac{π}{8}$个单位长度而得到
C.图象关于直线x=$\frac{5π}{8}$对称
D.图象关于点($\frac{π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,曲线ρ=4cos(θ-$\frac{π}{3}$)关于(  )
A.直线$θ=\frac{π}{6}$对称B.直线θ=$\frac{5}{6}$π对称C.点$(2,\frac{π}{3})$中心对称D.极点中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,bcosC=(2a-c)cosB.
(1)求B;
(2)若b=$\sqrt{7}$,且a+c=4,求S△ABC

查看答案和解析>>

同步练习册答案