精英家教网 > 高中数学 > 题目详情
11.(1)化简:$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
(2)若$α+β=\frac{3π}{4}$,求(1-tanα)(1-tanβ)的值.

分析 (1)原式利用诱导公式化简,进而利用同角三角函数基本关系式即可化简得解.
(2)由已知利用两角和的正切函数公式,特殊角的三角函数值可得tanα+tanβ=tanαtanβ-1,将所求变形后计算可得到结果.

解答 解:(1)$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
=$\frac{sinx}{(-tanx)}$•$\frac{cosx}{cotx•cotx}$•$\frac{1}{(-sinx)}$
=sinx.
(2)∵$α+β=\frac{3π}{4}$,
∴tan(α+β)=-1=$\frac{tanα+tanβ}{1-tanαtanβ}$,可得:tanα+tanβ=tanαtanβ-1,
∴(1-tanα)(1-tanβ)=1-(tanα+tanβ)+tanαtanβ=1-(tanαtanβ-1)+tanαtanβ=2.

点评 此题考查了运用诱导公式,同角三角函数基本关系式,两角和的正切函数公式,特殊角的三角函数值在化简求值中的应用,熟练掌握诱导公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x2+ax+$\frac{9}{a-1}$,(a为常数且a≠1),
(1)若不等式f(x)<0的解集为{x|-1<x<3},求a的值;
(2)若a>1,求f(1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}:满足a1=6,an+1=an2+4an+2,(n∈N*
(1)设Cn=log2(an+2),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{1}{{a}_{n}-2}$-$\frac{1}{{{a}_{n}}^{2}+4{a}_{n}}$,数列{bn}的前n项和为Tn,求证:$\frac{7}{30}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=6x-2.数列{an}的前n项和为sn,点(n,sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求f(x)和数列{an}的通项公式an
(Ⅱ)设bn=$\frac{3}{{a{\;}_na{\;}_{n+1}}},T_n^{\;}$是数列{bn}的前n项和并证明$\frac{3}{7}≤{T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\frac{x+1}{x-1}$,且f(a)=2,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=[x]-x(函数y=[x]的函数值表示不超过x的最大整数,如[-3.6]=-4,[2.1]=2),设函数g(x)=f(x)+lgx,则函数y=g(x)的零点的个数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,P为其右支上一点,连接PF1交y轴于点Q,若△PQF2为等边三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知过点A(-2,0)和B(0,1)的直线与直线2x+my-1=0平行,则m=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有限数列D:a1,a2,…,an,其中Sn为数列D的前n项和,定义$\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$为D的“德光和”,若有99项的数列a1,a2,…,a99的“德光和”为1000,则有100项的数列8,a1,a2,…,a99的“德光和”为998.

查看答案和解析>>

同步练习册答案