精英家教网 > 高中数学 > 题目详情
19.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=6x-2.数列{an}的前n项和为sn,点(n,sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求f(x)和数列{an}的通项公式an
(Ⅱ)设bn=$\frac{3}{{a{\;}_na{\;}_{n+1}}},T_n^{\;}$是数列{bn}的前n项和并证明$\frac{3}{7}≤{T_n}<\frac{1}{2}$.

分析 (I)由题意可设二次函数y=f(x)=ax2+bx(a≠0),f′(x)=2ax+b=6x-2.可得a,b,于是f(x)=3x2-2x.点(n,sn)(n∈N*)均在函数y=f(x)的图象上,可得Sn=3n2-2n,利用n=1时,a1=S1;n≥2时,an=Sn-Sn-1,即可得出an
(II)bn=$\frac{3}{(6n-5)(6n+1)}$=$\frac{1}{2}(\frac{1}{6n-5}-\frac{1}{6n+1})$.利用“裂项求和”方法可得Tn,再利用数列的单调性即可证明.

解答 解:(I)由题意可设二次函数y=f(x)=ax2+bx(a≠0),f′(x)=2ax+b=6x-2.
∴2a=6,b=-2,解得a=3,b=-2.
∴f(x)=3x2-2x.
∵点(n,sn)(n∈N*)均在函数y=f(x)的图象上,
∴Sn=3n2-2n,
∴n=1时,a1=S1=3-2=1;n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,n=1时也成立.
∴an=6n-5.
(II)bn=$\frac{3}{{a}_{n}{a}_{n+1}}$=$\frac{3}{(6n-5)(6n+1)}$=$\frac{1}{2}(\frac{1}{6n-5}-\frac{1}{6n+1})$.
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{7})$+$(\frac{1}{7}-\frac{1}{13})$+…+$(\frac{1}{6n-5}-\frac{1}{6n+1})]$
=$\frac{1}{2}(1-\frac{1}{6n+1})$,
∵数列$\{-\frac{1}{6n+1}\}$单调递增,T1=$\frac{1}{2}×(1-\frac{1}{7})$=$\frac{3}{7}$.
∴T1≤Tn$<\frac{1}{2}$,即$\frac{3}{7}≤{T_n}<\frac{1}{2}$.

点评 本题考查了导数的运算法则、数列的递推关系、数列“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,则f(1+log23)的值为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有2个红球、3个白球的甲箱和装有2个红球、2个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(Ⅰ)求顾客抽奖1次能获奖的概率;
(Ⅱ)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.
(Ⅲ)若只从甲箱中抽取3个球,记抽到的三个球中红球的数目是随机变量Y,求Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某几何体的直观图(图1)和三视图如图2所示,其正(主)视图为矩形,侧(左)视图为等腰直角三角形,俯视图为直角梯形.

(1)若M为EC中点,在AD上找一点P,使MP∥平面ABE;
(2)若N为AD中点,证明:FN⊥CE;
(3)求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁UN)={x|-2≤x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2bx+c$的两个极值点分别位于区间(-1,0)与(0,1)内,则$\frac{b-1}{2a-1}$的取值范围是(  )
A.$(-∞,-1)∪(\frac{1}{3},+∞)$B.$(-∞,-2)∪(\frac{2}{3},+∞)$C.$(-2,\frac{2}{3})$D.$(-1,\frac{1}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)化简:$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
(2)若$α+β=\frac{3π}{4}$,求(1-tanα)(1-tanβ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知二面角α-l-β的大小为120°,点B,C在棱l上,A∈α,D∈β,AB⊥l,CD⊥l,AB=2,BC=1,CD=3,则AD的长为(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an},若a2+a4…+a2n=a3a6,a1+a3+…+a2n-1=a3a5,且S2n=200,则公差d=0或6.

查看答案和解析>>

同步练习册答案