精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知a=2,b=2$\sqrt{2}$,A=$\frac{π}{6}$,则∠B=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{4}$或$\frac{3}{4}$πD.$\frac{π}{3}$或$\frac{2π}{3}$

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,可得sinB=$\frac{bsinA}{a}$=$\frac{2\sqrt{2}×sin\frac{π}{6}}{2}$=$\frac{\sqrt{2}}{2}$,
∵$A=\frac{π}{6}$,b>a,∴$B∈(\frac{π}{6},\frac{5π}{6})$,
解得B=$\frac{π}{4}$或$\frac{3π}{4}$.
故选:C.

点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知可行域$\left\{\begin{array}{l}x≥0\\ 3x+y≤4\\ x+3y≥4\end{array}\right.$,若直线$y=kx+\frac{4}{3}$将可行域所表示的图形的面积平分,则k的值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等比数列{an}的各项均为正数,且a2=2,a4=$\frac{1}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=-log2an+3,数列{bn}的前n项和为Tn,求$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+$\frac{1}{{T}_{3}}$+…+$\frac{1}{{T}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案有29937600种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过椭圆4x2+2y2=1的一个焦点F1的直线与椭圆相交于A、B两点,则A、B与椭圆的另一个焦点F2构成的△ABF2的周长等于(  )
A.2B.4C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在曲线y=f(x)=x2+3上取一点P(1,4)及附近一点(1+△x,4+△y),求:
(1)$\frac{△y}{△x}$;
(2)f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.利用诱导公式,求角$\frac{23π}{3}$,-$\frac{45π}{4}$,$\frac{79π}{6}$的正弦,余弦,正切的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知偶函数f(x)满足:?x∈R,恒有f(2-x)=f(2+x)且f(x)=$\left\{\begin{array}{l}{λ\sqrt{1-{x}^{2}}(0≤x≤1)}\\{x-1(1<x≤2)}\end{array}\right.$,若方程2f(x)-x=0恰好有5个实根,则正实数λ等于(  )
A.$\frac{3}{2}$$\sqrt{7}$B.4C.$\frac{3\sqrt{5}}{2}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,点P的坐标为(0,a),若线段AP的中点Q在椭圆上,则椭圆的离心率e为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步练习册答案