·ÖÎö £¨1£©Çó³öË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏß·½³ÌÓëÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß·½³Ì£¬½ø¶øÇó³öA£¬BÁ½µãµÄ×ø±ê£¬ÔÙÓÉË«ÇúÏßµÄÀëÐÄÂÊΪ2£¬¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$£¬Áгö·½³Ì£¬ÓÉ´Ë·½³ÌÇó³öpµÄÖµ£®
£¨2£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÅ×ÎïÏß·½³Ì£¬Éè³öA£¬BµÄ×ø±ê£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öx1+x2ºÍx1x2£¬ÔòÏß¶ÎABÖеã×ø±êÒÔ¼°ABµÄÖд¹Ïߵķ½³Ì¿ÉµÃ£¬°Ñy=0´úÈë·½³Ì£¬×îºóÀûÓá÷ABEΪÕýÈý½ÇÐΣ¬ÀûÓÃÕýÈý½ÇµÄÐÔÖÊÍÆ¶ÏEµ½Ö±ÏßABµÄ¾àÀëµÄ¹ØÏµÊ½ÇóµÃk£¬Ôòx0¿ÉÇó£®
½â´ð ½â£º£¨1£©¡ßË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©£¬
¡àË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇy=¡À$\frac{b}{a}$x
ÓÖÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß·½³ÌÊÇx=-$\frac{p}{2}$£¬
¹ÊA£¬BÁ½µãµÄ×Ý×ø±ê·Ö±ðÊÇy=¡À$\frac{pb}{2a}$£¬
ÓÖÓÉË«ÇúÏßµÄÀëÐÄÂÊΪ2£¬ËùÒÔ$\frac{c}{a}$=2£¬Ôò$\frac{b}{a}$=$\sqrt{3}$£¬
A£¬BÁ½µãµÄ×Ý×ø±ê·Ö±ðÊÇy=¡À$\frac{pb}{2a}$=¡À$\frac{\sqrt{3}p}{2}$£¬
ÓÖ¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$£¬xÖáÊǽÇAOBµÄ½Çƽ·ÖÏß
¡à$\frac{1}{2}¡Á\sqrt{3}p¡Á\frac{p}{2}$=$\sqrt{3}$£¬µÃp=2£¬
¡àÅ×ÎïÏßCµÄ·½³Ìy2=4x£»
£¨2£©ÓÉÌâÒâÖª£ºÖ±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèÆä·½³ÌΪ£ºy=k£¨x+1£©£¬
ÆäÖÐk¡Ù0´úÈëy2=4x£¬µÃk2x2+2£¨k2-2£©x+k2=0¢Ù
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸öʵÊý¸ù£¬ÓÉΤ´ï¶¨ÀíµÃx1+x2=-$\frac{2£¨{k}^{2}-2£©}{{k}^{2}}$£¬x1x2=1
ËùÒÔ£¬Ïß¶ÎEFµÄÖеã×ø±êΪ£¨$\frac{2-{k}^{2}}{{k}^{2}}$£¬$\frac{2}{k}$£©£¬Ïß¶ÎEFµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{2}{k}$=-$\frac{1}{k}$£¨x-$\frac{2-{k}^{2}}{{k}^{2}}$£©£¬
Áîy=0£¬x0=$\frac{2}{{k}^{2}}$+1£¬ËùÒÔ£¬µãPµÄ×ø±êΪ£¨$\frac{2}{{k}^{2}}$+1£¬0£©£®
ÒòΪ¡÷PEFΪÕýÈý½ÇÐΣ¬ËùÒÔ£¬µãP£¨$\frac{2}{{k}^{2}}$+1£¬0£©µ½Ö±ÏßEFµÄ¾àÀëµÈÓÚ$\frac{\sqrt{3}}{2}$|AB|£¬
¶ø|EF|=$\frac{4\sqrt{1-{k}^{2}}}{{k}^{2}}•\sqrt{1+{k}^{2}}$£®
ËùÒÔ£¬$\frac{2\sqrt{3}•\sqrt{1-{k}^{2}}}{{k}^{2}}=\frac{2\sqrt{1+{k}^{2}}}{|k|}$½âµÃk=$¡À\frac{\sqrt{3}}{2}$£¬ËùÒÔx0=$\frac{11}{3}$£®
µãÆÀ ±¾Ì⿼²éÔ²×¶ÇúÏߵĹ²Í¬ÌØÕ÷£¬½âÌâµÄ¹Ø¼üÊÇÇó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£¬½â³öA£¬BÁ½µãµÄ×ø±ê£¬ÁгöÈý½ÇÐεÄÃæ»ýÓëÀëÐÄÂʵĹØÏµÒ²ÊDZ¾ÌâµÄ½âÌâ¹Ø¼ü£¬ÓÐÒ»¶¨µÄÔËËãÁ¿£¬×öÌâʱҪÑϽ÷£¬·ÀÔËËã³ö´í£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | AB=BC | B£® | AB=BC£¬ÇÒAB¡ÍBC | C£® | AB¡ÍBC | D£® | AB=AC£¬ÇÒAB¡ÍAC |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 16¦Ð | B£® | 12¦Ð | C£® | 8¦Ð | D£® | 4¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com