9£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½Ìõ½¥½üÏßÓëÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ×¼Ïß·Ö±ð½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êÔ­µã£®ÈôË«ÇúÏßµÄÀëÐÄÂÊΪ2£¬¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©¹ýµãD£¨-1£¬0£©µÄÖ±ÏßlÓëÅ×ÎïÏßC½»ÓÚ²»Í¬µÄÁ½µãE£¬F£¬ÈôÔÚxÖáÉÏ´æÔÚÒ»µãP£¨x0£¬0£©Ê¹µÃ¡÷PEFÊǵȱßÈý½ÇÐΣ¬Çóx0µÄÖµ£®

·ÖÎö £¨1£©Çó³öË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏß·½³ÌÓëÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß·½³Ì£¬½ø¶øÇó³öA£¬BÁ½µãµÄ×ø±ê£¬ÔÙÓÉË«ÇúÏßµÄÀëÐÄÂÊΪ2£¬¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$£¬Áгö·½³Ì£¬ÓÉ´Ë·½³ÌÇó³öpµÄÖµ£®
£¨2£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÅ×ÎïÏß·½³Ì£¬Éè³öA£¬BµÄ×ø±ê£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öx1+x2ºÍx1x2£¬ÔòÏß¶ÎABÖеã×ø±êÒÔ¼°ABµÄÖд¹Ïߵķ½³Ì¿ÉµÃ£¬°Ñy=0´úÈë·½³Ì£¬×îºóÀûÓá÷ABEΪÕýÈý½ÇÐΣ¬ÀûÓÃÕýÈý½ÇµÄÐÔÖÊÍÆ¶ÏEµ½Ö±ÏßABµÄ¾àÀëµÄ¹ØÏµÊ½ÇóµÃk£¬Ôòx0¿ÉÇó£®

½â´ð ½â£º£¨1£©¡ßË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©£¬
¡àË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇy=¡À$\frac{b}{a}$x
ÓÖÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß·½³ÌÊÇx=-$\frac{p}{2}$£¬
¹ÊA£¬BÁ½µãµÄ×Ý×ø±ê·Ö±ðÊÇy=¡À$\frac{pb}{2a}$£¬
ÓÖÓÉË«ÇúÏßµÄÀëÐÄÂÊΪ2£¬ËùÒÔ$\frac{c}{a}$=2£¬Ôò$\frac{b}{a}$=$\sqrt{3}$£¬
A£¬BÁ½µãµÄ×Ý×ø±ê·Ö±ðÊÇy=¡À$\frac{pb}{2a}$=¡À$\frac{\sqrt{3}p}{2}$£¬
ÓÖ¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$£¬xÖáÊǽÇAOBµÄ½Çƽ·ÖÏß
¡à$\frac{1}{2}¡Á\sqrt{3}p¡Á\frac{p}{2}$=$\sqrt{3}$£¬µÃp=2£¬
¡àÅ×ÎïÏßCµÄ·½³Ìy2=4x£»
£¨2£©ÓÉÌâÒâÖª£ºÖ±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèÆä·½³ÌΪ£ºy=k£¨x+1£©£¬
ÆäÖÐk¡Ù0´úÈëy2=4x£¬µÃk2x2+2£¨k2-2£©x+k2=0¢Ù
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸öʵÊý¸ù£¬ÓÉΤ´ï¶¨ÀíµÃx1+x2=-$\frac{2£¨{k}^{2}-2£©}{{k}^{2}}$£¬x1x2=1
ËùÒÔ£¬Ïß¶ÎEFµÄÖеã×ø±êΪ£¨$\frac{2-{k}^{2}}{{k}^{2}}$£¬$\frac{2}{k}$£©£¬Ïß¶ÎEFµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{2}{k}$=-$\frac{1}{k}$£¨x-$\frac{2-{k}^{2}}{{k}^{2}}$£©£¬
Áîy=0£¬x0=$\frac{2}{{k}^{2}}$+1£¬ËùÒÔ£¬µãPµÄ×ø±êΪ£¨$\frac{2}{{k}^{2}}$+1£¬0£©£®
ÒòΪ¡÷PEFΪÕýÈý½ÇÐΣ¬ËùÒÔ£¬µãP£¨$\frac{2}{{k}^{2}}$+1£¬0£©µ½Ö±ÏßEFµÄ¾àÀëµÈÓÚ$\frac{\sqrt{3}}{2}$|AB|£¬
¶ø|EF|=$\frac{4\sqrt{1-{k}^{2}}}{{k}^{2}}•\sqrt{1+{k}^{2}}$£®
ËùÒÔ£¬$\frac{2\sqrt{3}•\sqrt{1-{k}^{2}}}{{k}^{2}}=\frac{2\sqrt{1+{k}^{2}}}{|k|}$½âµÃk=$¡À\frac{\sqrt{3}}{2}$£¬ËùÒÔx0=$\frac{11}{3}$£®

µãÆÀ ±¾Ì⿼²éÔ²×¶ÇúÏߵĹ²Í¬ÌØÕ÷£¬½âÌâµÄ¹Ø¼üÊÇÇó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£¬½â³öA£¬BÁ½µãµÄ×ø±ê£¬ÁгöÈý½ÇÐεÄÃæ»ýÓëÀëÐÄÂʵĹØÏµÒ²ÊDZ¾ÌâµÄ½âÌâ¹Ø¼ü£¬ÓÐÒ»¶¨µÄÔËËãÁ¿£¬×öÌâʱҪÑϽ÷£¬·ÀÔËËã³ö´í£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪ˮƽ·ÅÖõġ÷A BCÊǰ´¡°Ð±¶þ²â»­·¨¡±µÃµ½ÈçͼËùʾµÄÖ±¹Ûͼ£¬ÆäÖÐ B'O'=C'O'=1£¬${A}'{O}'=\frac{{\sqrt{3}}}{2}$£¬ÄÇô¶ÔÓÚÔ­¡÷ABCÔòÓУ¨¡¡¡¡£©
A£®AB=BCB£®AB=BC£¬ÇÒAB¡ÍBCC£®AB¡ÍBCD£®AB=AC£¬ÇÒAB¡ÍAC

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³³¤·½Ìå½ØÈ¥Ò»¸öÈýÀâ×¶ºó£¬Ðγɵļ¸ºÎÌåµÄÆ½ÃæÕ¹¿ªÍ¼Èçͼ1Ëùʾ£®
£¨1£©ÇëÔÚͼ2Éϲ¹»­³ö¸Ã¼¸ºÎÌåµÄÖ±¹Ûͼ£¬²¢ËµÃ÷ËüÊǼ¸ÃæÌ壻
£¨2£©Çó¸Ã¼¸ºÎÌåµÄÌå»ý£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¸ø³öÏÂÁÐÈý¸öÃüÌ⣺
¢Ùº¯Êýy=tanxÔÚµÚÒ»ÏóÏÞÊÇÔöº¯Êý
¢ÚÆæº¯ÊýµÄͼÏóÒ»¶¨¹ýÔ­µã
¢Ûº¯Êýy=sin2x+cos2xµÄ×îСÕýÖÜÆÚΪ¦Ð
¢Üº¯Êýy=x+$\frac{2}{x}$µÄ×îСֵΪ2$\sqrt{2}$
ÆäÖÐ ¼ÙÃüÌâµÄÐòºÅÊǢ٢ڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈýÀâ×¶S-ABCÖУ¬µ×ÃæABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬BA=BC=2£¬²àÀâSA=SC=2$\sqrt{3}$£¬¶þÃæ½ÇS-AC-BµÄÓàÏÒֵΪ$\frac{\sqrt{5}}{5}$£¬Ôò´ËÈýÀâ×¶Íâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®16¦ÐB£®12¦ÐC£®8¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬AÊÇÍÖÔ²ÉÏÒ»¶¯µã£¬Âú×㣺
¢Ù¡ÏF1AF2µÄ×î´óֵΪ60¡ã
 ¢ÚÈôÔ²CÓëF1AµÄÑÓ³¤Ïß¡¢F1F2µÄÑÓ³¤ÏßÒÔ¼°Ïß¶ÎAF2ÏàÇУ¬ÔòM£¨2£¬0£©ÎªÆäÖÐÒ»¸öÇе㣬ÔòÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼×¡¢ÒÒ Á½È˶ÀÁ¢µØÆÆÒëÒ»¸öÃÜÂ룬ËûÃÇÄÜÒë³öÃÜÂëµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{3}ºÍ\frac{1}{4}$£¬Çó£º
£¨¢ñ£© Á½¸öÈ˶¼ÄÜÒë³öÃÜÂëµÄ¸ÅÂÊ£»
£¨¢ò£© Ç¡ÓÐÒ»¸öÈËÒë³öÃÜÂëµÄ¸ÅÂÊ£»
£¨¢ó£© ÖÁ¶àÓÐÒ»¸öÈËÒë³öÃÜÂëµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚ${£¨{\frac{{\sqrt{x}}}{2}-\frac{2}{{\sqrt{x}}}}£©^n}$µÄÕ¹¿ªÊ½ÖжþÏîʽϵÊýµÄºÍΪ64£¬ÔòÕ¹¿ªÊ½ÖÐx2ÏîµÄϵÊýΪ$-\frac{3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®É輯ºÏA={£¨x£¬y£©|y=f£¨x£©}£¬Èô¶ÔÓÚÈÎÒâµÄ£¨x1£¬y1£©¡ÊA£¬×Ü´æÔÚ£¨x2£¬y2£©¡ÊA£¬Ê¹µÃx1x2+y1y2=0£¬Ôò³Æ¼¯ºÏA¾ßÓÐÐÔÖÊP£®¸ø¶¨ÏÂÁÐ4¸ö¼¯ºÏ£º
¢ÙA1={£¨x£¬y£©|y=2x }
¢ÚA2={£¨x£¬y£©|y=1+sinx}
¢ÛA3={£¨x£¬y£©|y=£¨x-1£©${\;}^{\frac{1}{3}}$} 
 ¢ÜA4¨T{£¨x£¬y£©|y=ln|x|}£®
ÆäÖоßÓÐÐÔÖÊPµÄΪ¢Ú¢Û£¨Ìî¶ÔÓ¦µÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸