精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=mx2+$\frac{1}{x}$的图象关于点O(0,0)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=(a+1)f(x)+x,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.

分析 (1)根据函数的奇偶性,求出m的值,从而求出f(x)的解析式即可;
(2)问题转化为a≥-x2+6x-1,令q(x)=-x2+6x-1,x∈(0,2],根据二次函数的性质求出a的范围即可.

解答 解:(1)因为函数$f(x)=m{x^2}+\frac{1}{x}$的图象关于点O(0,0)对称,
所以f(x)是奇函数,即?x∈(-∞,0)∪(0,+∞),f(-x)=-f(x),
∴$m{({-x})^2}+\frac{1}{-x}=-({m{x^2}+\frac{1}{x}})$,2mx2=0,对?x∈(-∞,0)∪(0,+∞)成立,
∴$m=0∴f(x)=\frac{1}{x}$.
(2)由题意$g(x)=x+\frac{a+1}{x}$,且$g(x)=x+\frac{a+1}{x}≥6$,在x∈(0,2]恒立,
∵x∈(0,2],∴a+1≥x(6-x),
即a≥-x2+6x-1,令q(x)=-x2+6x-1,x∈(0,2],
而g(x)=-(x-3)2+8,对称轴x=3,
∴x∈(0,2]时,g(x)递增,
q(x)max=q(2)=7,
故a≥7.

点评 本题考查了函数的奇偶性问题,考查函数恒成立以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P为△ABC内一点,∠BPC=90°.
(Ⅰ)若PB=$\frac{1}{2}$,求PA;
(Ⅱ)若∠APB=150°,设∠PBA=α,求tan2α值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,则z=2x-y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标xOy系中,以(x,y)为坐标的点落在直线2x-y=1上的概率为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{ax}{1+{x}^{2}}$+1(a≠0).
(Ⅰ)若函数f(x)图象在点(0,1)处的切线方程为x-2y+1=0,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的单调函数f(x)满足f(3)>f(0),且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x2+3x+a)的值域为R,则a的取值范围为(0,1)∪(1,$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_2}({x+1})}}$的定义域是(  )
A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x2-4x<0},B={0,1,2,3,4},则A∩B=(  )
A.{0,1,2,3}B.{1,2,3}C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

同步练习册答案