精英家教网 > 高中数学 > 题目详情
20.为了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位三十岁到四十岁的公务员,得到如下列联表,因不慎丢失部分数据.
(1))完成表格数据,判断是否有99%以上的把握认为“生二胎意愿与性别有关”并说明理由;
(2)现从有意愿生二胎的45人中随机抽取2人,求男性公务员和女性公务员各一人的概率.
男性公务员女性公务员总计
有意愿生二胎301545
无意愿生二胎202545
总计504090
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)直接利用k2运算法则求解,判断生二胎意愿与性别是否有关的结论.
(2)由题意从有意愿生二胎的45人中随机抽取2人,共有45×22种取法,其中男性公务员和女性公务员各一人的取法有30×15种,即可求解概率.

解答 解:(1)

男性公务员女性公务员总计
有意愿生二胎301545
无意愿生二胎202545
总计504090
由于k2=$\frac{90(25×30-15×20)^{2}}{50×40×45×45}$=4.5<6.635
故没有99%以上的把握认为“生二胎意愿与性别有关”…(6分)
(2)由题意从有意愿生二胎的45人中随机抽取2人,共有45×22种取法,其中男性公务员和女性公务员各一人的取法有30×15种,所以概率为$\frac{30×15}{45×22}$=$\frac{5}{11}$…(12分)

点评 本题考查独立检验,概率的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知正项数列{an}中,a1=1,a2=2,$2{a_{n+1}}^2={a_{n+2}}^2+{a_n}^2$,则a6等于(  )
A.16B.8C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=0.80.8,b=0.80.9,c=1.20.8,则a、b、c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数据x1,x2,…,xn的平均数为h,y1,y2,…,ym的平均数为k,则把两组数据合并成一组后,其平均数为$\frac{nh+mk}{m+n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在实数集R上的函数f(x)是周期为2的周期函数,且当x∈[-1,1]时,$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$.请设计计算f(x)的函数值的算法程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给丙的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:方程x2+mx+1=0有两个不等的负实根,命题q:方程4x2+4(m-2)x+1=0无实根,
(1)若命题p为真,求实数m的取值范围;
(2)若命题p和命题q一真一假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.通过随机询问110名性别不同的大学生是否爱好某处运动,得到如下的列联表:
合计
爱好402060
不爱好203050
合计6050110
由卡方公式算得:K2≈7.8
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表:得到的正确的结论是(  )
A.在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别无关”
B.在犯错的概率不超过0.1%的前提下,认为“爱好该运动与性别有关”
C.有99%以上的把握认为“爱好该运动与性别有关”
D.有99%以上的把握认为“爱好该运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=4-|x|-|x-3|
(Ⅰ)求不等式f(x+$\frac{3}{2}$)≥0的解集;
(Ⅱ)若p,q,r为正实数,且$\frac{1}{3p}$+$\frac{1}{2q}$+$\frac{1}{r}$=4,求3p+2q+r的最小值.

查看答案和解析>>

同步练习册答案