精英家教网 > 高中数学 > 题目详情
15.定义在实数集R上的函数f(x)是周期为2的周期函数,且当x∈[-1,1]时,$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$.请设计计算f(x)的函数值的算法程序框图.

分析 根据题目已知中分段函数的解析式$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$.然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,再编写满足题意的程序

解答 解:(1)将$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$
变形为:f(x)=2|x|+1,-1≤x≤1
(2)按原函数设计的程序框图如图②
设计的程序框图如图①

点评 本题考查了设计程序框图解决实际问题.主要考查编写程序解决分段函数问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为第一组[0,20),第二组AA1⊥平面ABC,第三组[40,60),第四组[60,80),第五组[80,100].
(1)求直方图中x的值;
(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(3)若从第一组和第二组中利用分层抽样的方法抽取6家企业,试求在这6家企业中选2家,这2家企业年上缴税收在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=4$\sqrt{3}$,cos(α+β)=-$\frac{11}{14}$,0°<α<90°,0°<β<90°,则cosβ的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某人抛掷一枚质地均匀的硬币100次,结果出现了50次正面向上.如果他将这枚硬币抛掷1000次,那么出现正面向上的次数,在下面四个选项中,最合适的选项是(  )
A.恰为500次B.恰为600次C.500次左右D.600次左右

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是某赛季甲、乙两名篮球运动员每场比赛得分情况的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是35,26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位三十岁到四十岁的公务员,得到如下列联表,因不慎丢失部分数据.
(1))完成表格数据,判断是否有99%以上的把握认为“生二胎意愿与性别有关”并说明理由;
(2)现从有意愿生二胎的45人中随机抽取2人,求男性公务员和女性公务员各一人的概率.
男性公务员女性公务员总计
有意愿生二胎301545
无意愿生二胎202545
总计504090
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,则实数a的取值范围是(  )
A.(-2$\sqrt{2}$,+∞)B.(-2$\sqrt{2}$,2$\sqrt{2}$)C.(-2$\sqrt{2}$,1]∪[2$\sqrt{2}$,+∞)D.(-∞,2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线x2=2py (P>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B,A,B,M的横坐标分别为XA,XB,XM则(  )
A.XA+XB=2XMB.XA•XB=X${\;}_{M}^{2}$C.$\frac{1}{{X}_{A}}$+$\frac{1}{{X}_{B}}$=$\frac{2}{{X}_{M}}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$.若点M(x0,y0)在椭圆C上,则点$N(\frac{x_0}{a},\frac{y_0}{b})$称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试求△AOB的面积.

查看答案和解析>>

同步练习册答案