分析 由已知利用同角三角函数基本关系式可求sin(α+β),cosα,sinα的值,由β=(α+β)-α,利用两角差的余弦函数公式即可计算得解.
解答 解:∵tanα=4$\sqrt{3}$,cos(α+β)=-$\frac{11}{14}$,0°<α<90°,0°<β<90°,
∴α+β∈(0°,180°),可得:sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{5\sqrt{3}}{14}$,
∴cosα=$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=$\frac{1}{7}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4\sqrt{3}}{7}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-$\frac{11}{14}$)×$\frac{1}{7}$+$\frac{5\sqrt{3}}{14}$×$\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [6,22] | B. | [7,22] | C. | [8,22] | D. | [7,23] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com