精英家教网 > 高中数学 > 题目详情
13.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,
(1)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.
(3)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$•$\overrightarrow{b}$.

分析 (1)根据向量的数量积和模计算即可;
(2)根据向量垂直的条件和向量的数量积公式计算即可;
(3)根据向量平行的条件和向量的数量积公式计算即可.

解答 解:(1)|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=1+2+2×1×$\sqrt{2}$×$\frac{1}{2}$=3+$\sqrt{2}$,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3+\sqrt{2}}$,
(2)设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ
∵$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=|$\overrightarrow{a}$|2-$\overrightarrow{a}$•$\overrightarrow{b}$=1-|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=1-$\sqrt{2}$cosθ=0,
解得cosθ=$\frac{\sqrt{2}}{2}$,
∴θ=45°,
(3)∵$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为0°或180°,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos0°=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos180°=-$\sqrt{2}$

点评 本题考查了向量的数量积公式以及向量的垂直和平行的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)的定义域为R,满足f′(x)+f(x)=x2,且f(0)=0,则下列判断正确的是(  )
A.f(x)无极值点B.f(x)有一个极值点C.f(x)有两个极值点D.f(x)有三个极值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\frac{{{{({1-i})}^2}}}{z}$=1+i,i为虚数单位,则z的虚部为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}中,a1=1,a2=2,当n∈N*时,an+2等于anan+1的个位数,若数列{an} 前k项和为243,则k=62.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,C=90°,且CA=CB=6,点M满足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,则$\overrightarrow{CM}$•$\overrightarrow{CB}$=(  )
A.2B.12C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知0<a<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=-$\frac{5}{13}$,sinα=$\frac{4}{5}$,则sinβ=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{56}{65}$D.-$\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x);
②函数f(x)有2个零点;
③f(x)>0的解集为(-1,0)∪(1,+∞)
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={1,2,3,x},B={1,4},若B⊆A,则x为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集U={-2,-1,0,1,2},集合A={-1,0,1},B={-2,-1,0},则∁UA∩B={-2}.

查看答案和解析>>

同步练习册答案