精英家教网 > 高中数学 > 题目详情

已知函数上是单调递减函数,
方程无实根,若“”为真,“”为假,求的取值范围。

解析试题分析:由“”为真,“”为假可知p,q一真一假,分别讨论p真q假,p假q真两种情况下对应的不等式.P由导函数求单调区间,q为一元二次方程无实根.
试题解析:
解:p:
因为函数y在上是单调递减函数,所以上恒成立。  2分
故:,所以  4分
q:方程无实根,故
所以:  6分
因为“p或q”为真,”p且q“为假,所以:p,q一真一假。
(1)当p真q假时,  8分
(2)当p假q真时,  10分
综上:m的取值范围是:。  12分
考点:利用导数求单调性,一元二次方程的根的判断,逻辑联结词.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)设,求函数的图像在处的切线方程;
(2)求证:对任意的恒成立;
(3)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中b≠0.
(1)当b>时,判断函数在定义域上的单调性:
(2)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围
(2)设函数,当在区间内变化时,
(1)求函数的取值范围;
(2)若函数有零点,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在实数集上的函数.
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案