精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.

(1);(2)

解析试题分析:(1)利用函数极值点的导数等于0,且此点的左侧和右侧导数的符号相反,求得实数的值;(2)问题等价于对任意的时,都有,分类讨论,利用导数的符号判断函数的单调性,由单调性求出函数的最小值及的最大值,根据它们之间的关系求出实数的取值范围.
试题解析:(1)∵,其定义域为,∴
是函数的极值点,∴,即.
,∴
经检验当时,是函数的极值点,∴
(2)对任意的都有成立等价于对任意的,都有
时,
∴函数上是增函数,∴.
,且
①当时,
∴函数上是增函数,∴
,得a
,∴不合题意.
②当时,
,则
,则
∴函数上是减函数,在上是增函数.
.
,得.又,∴
③当时,
函数上是减函数.
.
,得.又,∴.
综上所述,的取值范围为
考点:1、函数在某点取得极值的条件;2、利用导数求闭区间上函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线恰有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,讨论函数在区间上的单调性;
(2)若且对任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数在点(1,1)处的切线方程;
(2)若在y轴的左侧,函数的图象恒在的导函数图象的上方,求k的取值范围;
(3)当k≤-l时,求函数在[k,l]上的最小值m。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是单调递减函数,
方程无实根,若“”为真,“”为假,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判断f(x)的单调性;.
(2)若x>1时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)设,若对任意恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求实数m的取值范围。

查看答案和解析>>

同步练习册答案