精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求实数m的取值范围。

(1)的极大值为,无极小值.(3)

解析试题分析:(1)求已知函数的极值,利用导数法,即求定义域,求导,求导数为0与单调区间,判断极值点求出极值. (2) 求定义域,求导.利用数形结合思想讨论导数(含参数二次不等式)的符号求f(x)的单调区间,讨论二次含参数不等式注意按照定性(二次项系数是否为0),开口,判别式,两根大小得顺序依次进行讨论,进而得到函数f(x)的单调性(注意单调区间为定义域的子集)(3)这是一个恒成立问题,只需要(m-ln3)a-2ln3>(|f(x1)-f(x­2)|),故求解确定|f(x1)-f(x­2)|最大值很关键,分析可以发现(|f(x1)-f(x­2)|)=,故可以利用第二问单调性来求得函数的最值进而得到(|f(x1)-f(x­2)|). (m-ln3)a-2ln3>(|f(x1)-f(x­2)|)对于任意的a∈(2, 3)恒成立,则也是一个恒成立问题,可以采用分离参数法就可以求的m的取值范围.
试题解析:(1)当时,,由,解得 ,可知上是增函数,在上是减函数.
的极大值为,无极小值.

①当时,上是增函数,在上是减函数;
②当时,上是增函数;
③当时,上是增函数,在上是减函数  8分
(3)当时,由(2)可知上是增函数,
.
对任意的a∈(2, 3),x­1, x2∈[1, 3]恒成立,

对任意恒成立,
对任意恒成立,由于当时,,∴.  
考点: 导数 恒成立问题 不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:
(2)若对恒成立,求实数的取值范围;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的图像与直线相切于点.
(1)求的值;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若函数处与直线相切,
(1)求实数的值;(2)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的函数
(1)当时,求函数的极值;
(2)若函数没有零点,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度(千米∕时)之间有如下函数关系:。已知甲、乙两地相距100千米。
(1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

同步练习册答案