精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知的必要非充分条件,求实数的取值范围.

的取值范围是.

【解析】

试题分析:先分别求出所对应的不等式的解集,由的必要非充分条件,得出的必要非充分条件,从而得到,画出数轴,列出不等式组,即可确定的取值范围.

试题解析:记

因为的必要非充分条件,所以的必要非充分条件

所以,所以(检验:当时,,满足

故所求的的取值范围是.

考点:1.绝对值不等式;2.二次不等式;3.简单的逻辑联结词.

考点分析: 考点1:必要条件、充分条件与充要条件的判断 【知识点的认识】正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点.
1.充分条件:对于命题“若p则q”为真时,即如果p成立,那么q一定成立,记作“p?q”,称p为q的充分条件.意义是说条件p充分保证了结论q的成立,换句话说要使结论q成立,具备条件p就够了当然q成立还有其他充分条件.如p:x≥6,q:x>2,p是q成立的充分条件,而r:x>3,也是q成立的充分条件.
必要条件:如果q成立,那么p成立,即“q?p”,或者如果p不成立,那么q一定不成立,也就是“若非p则非q”,记作“¬p?¬q”,这是就说条件p是q的必要条件,意思是说条件p是q成立的必须具备的条件.
充要条件:如果既有“p?q”,又有“q?p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p?q”.
2.从集合角度看概念:
如果条件p和结论q的结果分别可用集合P、Q 表示,那么
①“p?q”,相当于“P?Q”.即:要使x∈Q成立,只要x∈P就足够了--有它就行.
②“q?p”,相当于“P?Q”,即:为使x∈Q成立,必须要使x∈P--缺它不行.
③“p?q”,相当于“P=Q”,即:互为充要的两个条件刻画的是同一事物.
3.当命题“若p则q”为真时,可表示为,则我们称p为q的充分条件,q是p的必要条件.这里由,得出p为q的充分条件是容易理解的.但为什么说q是p的必要条件呢?事实上,与“”等价的逆否命题是“”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.
4.“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同.也就是说,如果命题p等价于命题q,那么我们说命题p成立的充要条件是命题q成立;同时有命题q成立的充要条件是命题p成立.
【解题方法点拨】
1.借助于集合知识加以判断,若P?Q,则P是Q的充分条件,Q是的P的必要条件;若P=Q,则P与Q互为充要条件.
2.等价法:“P?Q”?“¬Q?¬P”,即原命题和逆否命题是等价的;原命题的逆命题和原命题的否命题是等价的.
3.对于充要条件的证明,一般有两种方法:其一,是用分类思想从充分性、必要性两种情况分别加以证明;其二,是逐步找出其成立的充要条件用“?”连接.
【命题方向】
充要条件主要是研究命题的条件与结论之间的逻辑关系,它是中学数学最重要的数学概念之一,它是今后的高中乃至大学数学推理学习的基础.在每年的高考中,都会考查此类问题. 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年河北省高二上学期期末考试数学试卷(解析版) 题型:选择题

已知研究之间关系的一组数据如下表所示,则的回归直线方程

必过点( )

0

1

2

3

1

3

5

7

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年广东省高二上学期期末考试文科数学试卷(解析版) 题型:选择题

是抛物线的焦点,点在该抛物线上,且点的横坐标是,则=( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:高中数学 来源:2014-2015学年广东省广州市高一上学期期末考试数学试卷(解析版) 题型:选择题

下列四个说法:

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

正确的是( )

A.①和② B.②和③ C.③和④ D.②和④

查看答案和解析>>

科目:高中数学 来源:2014-2015学年安徽省马鞍山市高二上学期期末考试文科数学试卷(解析版) 题型:解答题

(本题满分14分)如图,椭圆的顶点为焦点为.

(1)求椭圆的方程;

(2)设直线,且与椭圆相交于两点,当的中点时,求直线的方程.

(3)设为过原点的直线,是与垂直相交于点且与椭圆相交于两点的直线,,是否存在上述直线使以为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年安徽省马鞍山市高二上学期期末考试文科数学试卷(解析版) 题型:填空题

若命题“”是真命题,则实数的取值范围为 .

查看答案和解析>>

科目:高中数学 来源:2014-2015学年安徽省马鞍山市高二上学期期末考试文科数学试卷(解析版) 题型:选择题

抛物线的焦点坐标是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年安徽省马鞍山市高二上学期期末考试理科数学试卷(解析版) 题型:选择题

设圆锥曲线的两个焦点分别为,若曲线上存在点满足,则曲线的离心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年陕西省宝鸡市九校高三联合检测理科数学试卷(解析版) 题型:填空题

已知函数是定义在上的奇函数,在上单调递减,且,若,则的取值范围为 .

查看答案和解析>>

同步练习册答案