精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数.

(1)若的定义域为,求实数的取值范围;

(2)当时,求函数的最小值

(3)是否存在非负实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

【答案】(1)(2)(3)

【解析】试题分析:(1)由恒成立,分m=0与二次函数讨论,根据二次函数性质得判别式小于零,解得实数的取值范围;(2)先求值域得函数定义域,再根据对称轴与定义区间位置关系,讨论函数最小值取法(3)先化简函数,再根据二次函数单调性确定值域取法,解方程组可得的值

试题解析:解:(1)

2

,则

对称轴为,当时, 时,

时, 时,

时, 时, .

综上所述,

3,假设存在,由题意,知解得存在,使得函数定义域为,值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A是实数集,满足若aA,则A,a≠1,且1A.

(1)若2∈A,则集合A中至少还有几个元素?求出这几个元素.

(2)集合A中能否只含有一个元素?请说明理由.

(3)若aA,证明:1-A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是长方形,侧棱底面,且,过DF,过FPCE.

)证明:平面PBC

)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,D的中点,AC平面BCC1B1

(Ⅰ)证明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的长;

(2)求B1D与平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.

(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;

(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱柱ABCD-A1B1C1D1已知平面AA1C1C⊥平面ABCDAB=BC=CA=AD=CD=1.

(1)求证BD⊥AA1.

(2)在棱BC上取一点E使得AE∥平面DCC1D1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中 是新样式单车的月产量(单位:件),利润总收益总成本.

(1)试将自行车厂的利润元表示为月产量的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

同步练习册答案