精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体中, 是正三角形, 是直角三角形, ,.

(1)证明:平面平面;

(2)的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的大小

【答案】(1)证明见解析;(2)

【解析】

(1)如图所示,取AC的中点O,连接BO,OD.ABC是等边三角形,可得OBAC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,ADC=90°.可得DO=AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明

(2)由平面把四面体分成体积相等的两部分,明确中点, 易知二面角的平面角为.

1证明:如图所示,取AC的中点O,连接BO,OD.

∵△ABC是等边三角形,∴OB⊥AC.

ABD与CBD中,AB=BD=BC,∠ABD=∠CBD,

∴△ABD≌△CBD,∴AD=CD.

∵△ACD是直角三角形,

AC是斜边,∴∠ADC=90°.

∴DO=AC.

∴DO2+BO2=AB2=BD2

∴∠BOD=90°.

∴OB⊥OD.

又DO∩AC=O,∴OB⊥平面ACD.

又OB平面ABC,

平面ACD平面ABC.

2∵平面把四面体分成体积相等的两部分,

,∴.

中点,

由(1)知为直角三角形,则

为等边三角形

由(1)知则AE=CE,

所以,

则二面角的平面角为,且二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图所示,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线与椭圆交于两点,记的面积为

(1)当时,求的最大值;

(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点且与椭圆交于两点, 中点, 的斜率为.

(1)求椭圆的方程;

(2)设是椭圆的动弦,且其斜率为1,问椭圆上是否存在定点,使得直线的斜率满足?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为15°和30°,则__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2ax20无实根,命题q:函数f(x)logax(0,+)上单调递增,若pq为假命题,pq真命题,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= (a>0,a≠1)的定义域和值域都是[0,1],则loga +loga =(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案