精英家教网 > 高中数学 > 题目详情
2.若x,y满足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x,y∈{N^*}\end{array}\right.$,则y-2x的最大值为(  )
A.3B.2C.0D.-2

分析 首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x+z在y轴上的截距最大时,z有最大值,求出此时直线y=2x+z经过的可行域内的点的坐标,代入z=y-2x中即可.

解答 解:如图,作出x,y满足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x,y∈{N^*}\end{array}\right.$的可行域,由$\left\{\begin{array}{l}{2x+y-2=0}\\{x+y-3=0}\end{array}\right.$解得A(-1,4)
作出直线l0:y=2x,将l0平移至过点A处时,函数z=y-2x有最大值4+2=6.
故选:C.

点评 本题考查线性规划问题,考查数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知复数z满足(1-i)z=$\sqrt{3}$+i(i是虚数单位),则z的模为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为(  )
A.2B.$\frac{6}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能载一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为(  )
A.420B.240C.360D.540

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c.已知向量$\overrightarrow m=({2cos\frac{A}{2},sin\frac{A}{2}})$,$\overrightarrow n=({cos\frac{A}{2},-2sin\frac{A}{2}})$,$\overrightarrow m•\overrightarrow n=-1$.
(1)求cosA的值;
(2)若$a=2\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=4x与直线x=1围成的封闭区域的面积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\sqrt{2-{x^2}}$-x+b有一个零点,则实数b的取值范围为{2}∪($-\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(-2,f(-2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$\frac{{sin{{40}°}-\sqrt{3}cos{{20}°}}}{{cos{{10}°}}}$=-1.

查看答案和解析>>

同步练习册答案