精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=ex-1+2x-log${\;}_{\sqrt{2}}$ax(a>0)在区间(0,2)内有两个零点,则a的取值范围为(  )
A.($\sqrt{2}$,${2}^{\frac{e}{2}}$)B.(0,2]C.(2,2${\;}^{\frac{e+2}{2}}$]D.(2${\;}^{\frac{3}{2}}$,2${\;}^{\frac{e+4}{4}}$)

分析 分离常数,构造函数,利用导数求出函数的最值,问题得以解决.

解答 解:∵f(x)=ex-1+2x-log${\;}_{\sqrt{2}}$ax=0,
∴log2a=$\frac{{e}^{x-1}}{2x}$+1在(0,2)内有两解,
令y=$\frac{{e}^{x-1}}{2x}$+1,
则y′=$\frac{{e}^{x-1}(x-1)}{2{x}^{2}}$,
∴y在(0,1)为减函数,在(1,2)上为增函数,
∴当x=1时,取得最小值,y=$\frac{3}{2}$,
当x→0时,y→+∞,
当x=2时,y=$\frac{e+4}{4}$,
∴$\frac{3}{2}$<log2a<$\frac{e+4}{4}$,
∴${2}^{\frac{3}{2}}$<a<${2}^{\frac{e+4}{4}}$,
故选:D.

点评 本题考查的知识点是利用导函数判断函数单调性时,函数零点存在定义,利用导数求出最值是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在某电视台举行的大型联欢会晚上,需抽调部分观众参加互动,已知全部观众有900人,现需要采用系统抽样方法抽取30人,根据观众的座位号将观众编号为1,2,3,…,900号,分组后在第一组采用简单随机抽样的方法抽到的号码为3,抽到的30人中,编号落入区间[1,360]的人与主持人A一组,编号落入区间[361,720]的人与支持人B一组,其余的人与支持人C一组,则抽到的人中,在C组的人数为(  )
A.12B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\frac{|x|}{e^x}$,g(x)=-4x+m•2x+1+m2+2m-1,若M={x|f(g(x))>e}=R,则实数m的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知凸四边形ABCD的顶点在一个圆周上,另一个圆的圆心O在AB上,且与四边形ABCD的其余三边相切.点E在边AB上,且AE=AD.
求证:O,E,C,D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P是圆C:(x-2)2+(y-1)2=5上的一动点,Q是直线l:x+2y+6=0上一动点,则|PQ|的最小值是(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.2$\sqrt{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,过B、C分别作∠BAC的平分线的垂线,E、F为垂足,AD⊥BC于D、M为BC中点,求证:M、E、D、F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,P为△ABC内一点,使得∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.求证:△ABC是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PD⊥平面AEB;
(2)若直线PC交平面AEB于点F,求直线BF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,F1,F2分别是椭圆的左右焦点,过椭圆右焦点F2的直线l与椭圆C1交于M,N两点.
(I)是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在,求出直线l的方程;若不存在,说明理由;
(Ⅱ)若AB是椭圆C1经过原点O的弦,且MN∥AB,求证:$\frac{|AB{|}^{2}}{|MN|}$为定值.

查看答案和解析>>

同步练习册答案