精英家教网 > 高中数学 > 题目详情
4.已知P是圆C:(x-2)2+(y-1)2=5上的一动点,Q是直线l:x+2y+6=0上一动点,则|PQ|的最小值是(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.2$\sqrt{5}$D.2$\sqrt{6}$

分析 由题意画出图形,由点到直线的距离公式求出圆心到直线的距离,减去圆的半径得答案.

解答 解:如图,圆C:(x-2)2+(y-1)2=5的圆心坐标C(2,1),半径r=$\sqrt{5}$.

圆心C(2,1)到直线l:x+2y+6=0的距离d=$\frac{|1×2+2×1+6|}{\sqrt{5}}=2\sqrt{5}$.
∴|PQ|的最小值是$2\sqrt{5}-\sqrt{5}=\sqrt{5}$.
故选:B.

点评 本题考查直线与圆的位置关系,考查了点到直线距离公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|1<x<10,x∈N}.B={x|x=$\sqrt{n}$,n∈A}.则A∩B=(  )
A.{1,2,3}B.{x|1<x<3}C.{2,3}D.{x|1<x<$\sqrt{10}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{lnx}{1+x}-lnx$在x=x0处取得最大值,给出下列5个式子:
①f(x0)<x0,②f(x0)=x0,③f(x0)>x0,④$f({x_0})<\frac{1}{2}$,⑤$f({x_0})>\frac{1}{2}$.则其中正确式子的序号为(  )
A.①和④B.②和④C.②和⑤D.③和⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正三棱锥的体积为9$\sqrt{3}$cm3,高为3cm.则它的全面积为27$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在等边△ABC中,点D,E分别在边AC,AB上,且AD:DC=1:2,AE:AB=2:3,BD与CE相交于点F.
(Ⅰ)证明:A,B,C,D四点共圆;
(Ⅱ)若BC=2,求△AEF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=ex-1+2x-log${\;}_{\sqrt{2}}$ax(a>0)在区间(0,2)内有两个零点,则a的取值范围为(  )
A.($\sqrt{2}$,${2}^{\frac{e}{2}}$)B.(0,2]C.(2,2${\;}^{\frac{e+2}{2}}$]D.(2${\;}^{\frac{3}{2}}$,2${\;}^{\frac{e+4}{4}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|2x-1|-|x+1|.
(1)求不等式f(x)≤0的解集;
(2)若f(x)>a-2|x+1|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足 z-1=(z+1)i,则z的值是(  )
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确命题的个数是(  )
(1)对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握越大;
(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
(3)若a>0,b>0且$\frac{2}{a}$+$\frac{1}{b}$=1,则a+b≥4;
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p.
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案