精英家教网 > 高中数学 > 题目详情

已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=4,则直线AF的倾斜角等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:利用抛物线的定义,|PF|=||PA|,设F在l上的射影为F′,依题意,可求得点P的坐标,从而可求得|AF′|,可求得点A的坐标,代入斜率公式,从而可求得直线AF的倾斜角.
解答:解:∵抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,
∴|PF|=||PA|,F(1,0),准线l的方程为:x=-1;
设F在l上的射影为F′,又PA⊥l,
设P(m,n),依|PF|=||PA|得,m+1=4,m=3,∴n=2
∵PA∥x轴,
∴点A的纵坐标为2,点A的坐标为(-1,2
则直线AF的斜率
直线AF的倾斜角等于
故选A.
点评:本题考查抛物线的简单性质,考查转化思想,考查解三角形的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案