精英家教网 > 高中数学 > 题目详情
8.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\\{\;}\end{array}\right.$,则当3x-y取得最小值时,$\frac{x-5}{y+3}$的值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 先画出满足条件的平面区域,求出2x-y取得最小值时A点的坐标,将A点的坐标代入$\frac{x-5}{y+3}$,求解即可.

解答 解:满足条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\\{\;}\end{array}\right.$的平面区域,如图,
令z=3x-y,
则当直线z=3x-y经过直线x-y+2=0和直线
x+y-4=0的交点A时,z取得最小值.
此时A的坐标为(1,3),
∴$\frac{x-5}{y+3}$=$-\frac{2}{3}$
故选:A.

点评 本题考察了简单的线性规划问题,考察数形结合思想,求出2x-y取得最小值时的x,y的值是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某银行在我市举行了“网上银行、手机银行办理业务免费政策”满意度测评,共有10000人参加了这次测评(满分100分,得分全为整数),为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见如表:
组别 分组 频数  频率
 1[50,60)0.08 
 2[60,70)15 0.3 
 3[70,80)21
 4[80,90)0.12 
 5[90,100)40.08 
合计 1.00 
(1)求出表中a,b,c的值;
(2)若分数字80(含80分)以上表示对“网上银行、手机银行办理业务免费政策”非常满意,其中分数在90(含有90分)以上表示“十分满意”,现从被抽取的“”非常满意人群中随机抽取2人,求至少一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{z}&{1+i}\\{2}&{1}\end{array}|$=0的复数z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.制药厂组织2组技术人员分别独立地试制不同类型的新药,设每组试制成功的概率都是0.40,当第一组成功时,该组研制的新药的年销售额为400万元,若失败则没有收入,当第二组成功时,该组研制的新药的年销售额为600万元,若失败则没有收入,以X表示这两种新药的年销售总额,求X的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了安全起见,高速公路同一车道上行驶的前后两辆汽车之间的距离不得小于kx2(单位:m)其中x(单位:km/h)是车速,k为比例系数,经测定,当车速为60km/h时,安全车距为40m,假设每辆车的平均车长为5m.
(1)写出在安全许可的情况下,某路口同一车道的车流量y(单位:辆/min)关于车速x的函数;
(2)如果只考虑车流量,规定怎样的车速可以使得高速公路上的车流量最大?这种规定可行吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在△ABC中,C=$\frac{π}{3}$,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足,若DE=2$\sqrt{2}$,求cosA=$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线的非零向量,且$\overrightarrow{a}$═$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)证明:$\overrightarrow{a}$,$\overrightarrow{b}$可以作为一组基底;
(2)以$\overrightarrow{a}$,$\overrightarrow{b}$为基底,求向量$\overrightarrow{c}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$的分解式;
(3)若4$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,求λ,μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求满足下列条件的圆的方程:
(1)圆心在原点,半径为6;
(2)经过三点A(1,1),B(-6,3),C(3,0);
(3)过两点(-1,3)和(6,-1),并且圆心在直线x+2y=0上;
(4)以点C(-1,-5)为圆心,并且和y轴相切.

查看答案和解析>>

同步练习册答案