【题目】已知直线l:与拋物线C:相切.
(1)求拋物线方程;
(2)斜率不为0的直线经过拋物线C的焦点F,交抛物线于两点A,B,拋物线C上是否存在两点D,E关于直线对称.若存在求出斜率k的取值范围;若不存在,说明理由.
【答案】(1);(2)不存在,理由见解析
【解析】
(1)联立直线的方程和抛物线方程,利用判别式为零列方程,解方程求得,由此求得抛物线方程.
(2)设出直线的方程,根据对称性设出直线的方程,联立直线的方程和抛物线方程,化简后写出根与系数关系以及判别式,由此求得中点的坐标,将点坐标代入直线的方程,化简后判断出符合题意的不存在.
由题联立方程组.
因为直线l与拋物C相切,所以,舍,
所以抛物线C的方程为.
由可知,所以可设直线的方程为.
假设抛物线C上存在两点D,E关于直线对称,
可设直线DE的方程为,
联立方程组.
由,得,
设,,DE中点为,
则,,
因为在直线上,所以将其代入方程,
得,即,
代入,得,
所以k无解,故不存在.
即抛物线C上不存在两点D,E关于过焦点的直线对称.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域是,有下列四个命题,其中正确的有( )
A.对于(,0),函数在上是单调增函数
B.对于(0,),函数存在最小值
C.存在(,0),使得对于任意,都有成立
D.存在(0,),使得函数有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从5名男生和4名女生中选出4人参加辩论比赛.
(1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法?
(2)如果4个人中既有男生又有女生,那么有多少种不同选法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某林场现有木材存量为,每年以25%的增长率逐年递增,但每年年底要砍伐的木材量为,经过年后林场木材存有量为
(1)求的解析式
(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不应少于,如果,那么该地区会发生水土流失吗?若会,要经过几年?(取)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。
(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;
(2)令,若对任意都有恒成立,求的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com