精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域是,有下列四个命题,其中正确的有(

A.对于(0),函数上是单调增函数

B.对于(0),函数存在最小值

C.存在(0),使得对于任意,都有成立

D.存在(0),使得函数有两个零点

【答案】ABD

【解析】

时,恒成立,可得正确;当时,利用二次求导可知函数在定义域内存在最小值,故正确;当时,根据时,可知不正确;当时,根据函数的最小值小于零能成立,可知正确.

因为,定义域为

时,恒成立,所以上是单调增函数,故正确;

时,令,则,所以为增函数,设的根为,即,则当时,,此时上递减;当时,,此时上递增,所以函数时取得最小值,故正确;

时,由知,函数上是单调增函数,因为时,,所以,所以不正确;

时,由知,函数时取得最小值,要使得函数有两个零点,必须且只需函数的最小值小于0即可,即

那么当时,有

所以存在,使上式成立,故正确.

故选:ABD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知四边形为矩形,的角平分线.

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高血压高血糖和高血脂统称“三高”.如图是西南某地区从2010年至2016年患“三高”人数y(单位:千人)的折线图.

1)由折线图看出,可用线性回归模型拟合的关系,请求出相关系数(精确到0.01)并加以说明;

2)建立关于的回归方程,预测2018年该地区患“三高”的人数.

参考数据:.参考公式:相关系数 回归方程 中斜率和截距的最小二乘法估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,C是圆上的点,平面PAC⊥平面ABCPAAB.

1)求证:PA⊥平面ABC

2)若PA=AC=2,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:设一正方形纸片ABCD边长为2分米切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中O为正四棱锥底面中心

若正四棱锥的棱长都相等,求这个正四棱锥的体积V;

设等腰三角形APQ的底角为x,试把正四棱锥的侧面积S表示为x的函数,并求S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(Ⅰ)讨论函数的单调性;

(Ⅱ)是否存在正实数,使得对任意,都有,若存在,求出实数的取值范围;若不存在,请说明理由;

(Ⅲ)当时, ,对恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象向左平移个单位后得到的图象对应的函数是奇函数,则直线的斜率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与拋物线C相切.

1)求拋物线方程;

2)斜率不为0的直线经过拋物线C的焦点F,交抛物线于两点AB,拋物线C上是否存在两点DE关于直线对称.若存在求出斜率k的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案