精英家教网 > 高中数学 > 题目详情
19.“x<4”是“|x-2|<1”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由|x-2|<1,解得1<x<3,即可判断出结论.

解答 解:由|x-2|<1,解得1<x<3,
∴“x<4”是“|x-2|<1”成立的必要不成立条件,
故选:B.

点评 本题考查了绝对值不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知a=2,b=2$\sqrt{2}$,C=15°,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设正数x,y满足-1<x-y<2,则z=2x-2y的取值范围为(  )
A.(-∞,4)B.(0,4)C.($\frac{1}{4}$,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则$\frac{x+y}{y}$的取值范围是(  )
A.$(-∞,\frac{7}{6}]$B.$[\frac{14}{9},+∞)$C.$[\frac{14}{9},7]$D.$[\frac{7}{6},\frac{14}{9}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x∈R,x2≠x”的否定是(  )
A.?x∉R,x2≠xB.?x∈R,x2=xC.?x0∈R,x${\;}_{0}^{2}$≠x0D.?x0∈R,x${\;}_{0}^{2}$=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,PA=AB=2,点M,N分别是PD,DC的中点
(Ⅰ)判断直线MN与平面PAC的位置关系,并给予证明
(Ⅱ)求三棱锥P-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}是公比为2的等比数列,数列{bn}是公差为3且各项均为正整数的等差数列,则数列{a${\;}_{{b}_{n}}$}是(  )
A.公差为5的等差数列B.公差为6的等差数列
C.公比为6的等比数列D.公比为8的等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点A(2,0),椭圆E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆E的上焦点,直线AF的斜率为$-\frac{{\sqrt{3}}}{2}$,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于点P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|$\overrightarrow{AB}$|=8,|$\overrightarrow{BF}$|=6,cos∠ABF=$\frac{3}{4}$,则C的离心率的值是6-2$\sqrt{7}$.

查看答案和解析>>

同步练习册答案