分析 由已知条件,利用余弦定理求出|AF|,由椭圆的定义和椭圆的对称性质能求出椭圆的离心率.
解答
解:如图所示
在△AFB中,由余弦定理可得:
|AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF,
∵|AB|=8,|BF|=6,cos∠ABF=$\frac{3}{4}$,
∴|AF|2=82+62-2×8×6×$\frac{3}{4}$=28,
解得|AF|=2$\sqrt{7}$.
设F′为椭圆的右焦点,连接BF′,AF′.
根据对称性和勾股定理的逆定理可得四边形AFBF′是矩形.
∴|BF′|=|AF|=2$\sqrt{7}$,|FF′|=8.
∴2a=6+2$\sqrt{7}$,2c=8,解得a=3+$\sqrt{7}$,c=4.
∴e=$\frac{c}{a}$=$\frac{4}{3+\sqrt{7}}$=6-2$\sqrt{7}$.
故答案为:6-2$\sqrt{7}$.
点评 本题考查椭圆的离心率的求法,解题时要认真审题,注意余弦定理和椭圆的定义的合理运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-$\sqrt{2}$,$\sqrt{2}$] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{12}{7}$ | D. | $\frac{12}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com