分析 (Ⅰ)根据正弦定理与两角和的正弦公式,化简题中的等式可得sin(B+C)-2sinAcosC,结合三角函数的诱导公式算出cosC=$\frac{1}{2}$,可得角C的大小;
(Ⅱ)由余弦定理可得ab的值,利用三角形面积公式即可求解.
解答 解:(Ⅰ)∵在△ABC中,ccosB=(2a-b)cosC,
∴由正弦定理,可得sinCcosB=(2sinA-sinB)cosC,
即sinCcosB+sinBcosC=2sinAcosC,所以sin(B+C)=2sinAcosC,
∵△ABC中,sin(B+C)=sin(π-A)=sinA>0,
∴sinA=2sinAcosC,即sinA(1-2cosC)=0,可得cosC=$\frac{1}{2}$.
又∵C是三角形的内角,∴C=$\frac{π}{3}$.
(Ⅱ)∵C=$\frac{π}{3}$,a+b=13,c=7,
∴由余弦定理可得:72=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab=132-3ab,解得:ab=40,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×$40×$\frac{\sqrt{3}}{2}$=10$\sqrt{3}$.
点评 本题求角C的大小并依此求三角形面积的最大值.着重考查了正余弦定理、两角和的正弦公式三角函数的图象性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x∉R,x2≠x | B. | ?x∈R,x2=x | C. | ?x0∈R,x${\;}_{0}^{2}$≠x0 | D. | ?x0∈R,x${\;}_{0}^{2}$=x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{5}$i | C. | -$\frac{3}{5}$ | D. | -$\frac{3}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com