精英家教网 > 高中数学 > 题目详情
14.命题“?x∈R,x2≠x”的否定是(  )
A.?x∉R,x2≠xB.?x∈R,x2=xC.?x0∈R,x${\;}_{0}^{2}$≠x0D.?x0∈R,x${\;}_{0}^{2}$=x0

分析 直接利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题$p:?x∈(0,\frac{π}{2}),f(x)<0$,则?p:
?x0∈R,x${\;}_{0}^{2}$=x0
故选:D.

点评 本题考查命题得到,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若|$\overrightarrow{a}$$+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,则下列结论中,正确的是(4)(填序号).
(1)$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{0}$;
(2)$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$;
(3)|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;
(4)$\overrightarrow{a}$•$\overrightarrow{b}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠B=90°,AB=3,BC=4,O为△ABC内心,则$\overrightarrow{AO}•\overrightarrow{BC}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=$\frac{2π}{3}$.
(1)求证:平面ADE⊥平面ABE;
(2)求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是各项均为正项的等比数列,且3a1,$\frac{1}{2}{a_3}$,2a2成等差数列,则$\frac{{{a_{2014}}+{a_{2015}}}}{{{a_{2012}}+{a_{2013}}}}$=(  )
A.3或-1B.9或1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“x<4”是“|x-2|<1”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题:p?x∈(0,$\frac{π}{2}$),sinx+cosx>1恒成立,命题q:?x∈(0,$\frac{π}{2}$),使2x>3x,则下列结论中正确的是(  )
A.命题“p∧q”是真命题B.命题“p∧(¬q)”是真命题
C.命题“(¬p)∧q”为真命题D.命题“(¬p)∧(¬q)”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知正六棱柱的最大对角面的面积为1m2,互相平行的两个侧面的距离为1m,则这个六棱柱的体积为(  )
A.$\frac{{3\sqrt{3}}}{4}$m3B.$\frac{3}{4}$m3C.1m3D.$\frac{1}{2}$m3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-b)cosC-ccosB=0.
(Ⅰ)求角C的值;
(Ⅱ)若三边a,b,c满足a+b=13,c=7,求△ABC的面积.

查看答案和解析>>

同步练习册答案