精英家教网 > 高中数学 > 题目详情
15.已知复数Z的共轭复数$\overline{Z}$=$\frac{1-i}{1+2i}$,则复数Z的虚部是(  )
A.$\frac{3}{5}$B.$\frac{3}{5}$iC.-$\frac{3}{5}$D.-$\frac{3}{5}$i

分析 利用复数代数形式的乘除运算化简,求得Z后得答案.

解答 解:由$\overline{Z}$=$\frac{1-i}{1+2i}$=$\frac{(1-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-1-3i}{5}=-\frac{1}{5}-\frac{3}{5}i$,
得$Z=-\frac{1}{5}+\frac{3}{5}i$,
∴复数Z的虚部是$\frac{3}{5}$.
故选:A.

点评 题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠B=90°,AB=3,BC=4,O为△ABC内心,则$\overrightarrow{AO}•\overrightarrow{BC}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题:p?x∈(0,$\frac{π}{2}$),sinx+cosx>1恒成立,命题q:?x∈(0,$\frac{π}{2}$),使2x>3x,则下列结论中正确的是(  )
A.命题“p∧q”是真命题B.命题“p∧(¬q)”是真命题
C.命题“(¬p)∧q”为真命题D.命题“(¬p)∧(¬q)”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知正六棱柱的最大对角面的面积为1m2,互相平行的两个侧面的距离为1m,则这个六棱柱的体积为(  )
A.$\frac{{3\sqrt{3}}}{4}$m3B.$\frac{3}{4}$m3C.1m3D.$\frac{1}{2}$m3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式组$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$所表示的平面区域的面积为$\frac{4}{3}$,若lgy-lg(x+a)的最大值是1,则正数a的值是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=(k2+1)lnx-x2在区间(1,+∞)上是减函数,则实数k的取值范围是(  )
A.[-1,1]B.[-$\sqrt{2}$,$\sqrt{2}$]C.(-∞,-1]∪[1,+∞)D.(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线的中心在坐标原点,焦点在坐标轴上,双曲线上一点M与两焦点的距离的差的绝对值等于6,且离心率e=$\frac{5}{3}$,则该双曲线的焦距长为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-b)cosC-ccosB=0.
(Ⅰ)求角C的值;
(Ⅱ)若三边a,b,c满足a+b=13,c=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.焦点在x轴上的椭圆$\frac{x^2}{3n}+{y^2}=1(n>0)$的焦距为$4\sqrt{2}$,则长轴长是(  )
A.3B.6C.$6\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案