精英家教网 > 高中数学 > 题目详情
14.若2cos(θ-$\frac{π}{3}$)=3cosθ,则tanθ=(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

分析 先由余弦加法定理得到$\sqrt{3}sinθ=2cosθ$,再由同角三角函数关系式能求出tanθ.

解答 解:∵2cos(θ-$\frac{π}{3}$)=3cosθ,
∴2cosθcos$\frac{π}{3}$+2sin$θsin\frac{π}{3}$=3cosθ,
∴$\sqrt{3}sinθ=2cosθ$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意余弦加法定理和同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-b)cosC-ccosB=0.
(Ⅰ)求角C的值;
(Ⅱ)若三边a,b,c满足a+b=13,c=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.焦点在x轴上的椭圆$\frac{x^2}{3n}+{y^2}=1(n>0)$的焦距为$4\sqrt{2}$,则长轴长是(  )
A.3B.6C.$6\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,anan+1=2Sn,且a1=1,则2×a1+22×a2+…+22016×a2016=2+22017×2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{AB}$=-2$\overrightarrow{AC}$,那么下列对A,B,C三点的位置关系描述中正确的是②(填序号)
①三点构成△ABC;②三点共线且点A在线段BC上;③三点共线且点B在线段AC上;④三点共线且点C在线段AB上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.7个人坐在一排照相,若甲必须坐在中间,有多少种坐法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,
(1)a2=3,a3=-6,求S6
(2)a4=54,q=-3,求S5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,若c=2,b=2a,且cosC=$\frac{1}{4}$,则a等于(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ y≥-1\\ 4x+y≤9\\ x+y≤3\end{array}\right.$,若目标函数z=y-mx(m>0)的最大值为1,则m的值是(  )
A.$-\frac{20}{9}$B.1C.2D.5

查看答案和解析>>

同步练习册答案