分析 设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosα,-sinα),代入计算得到($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)=$\frac{1}{2}$+2sin(α-30°),根据三角函数的性质可求.
解答 解:∵单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosα,-sinα),
∴$\overrightarrow{a}$-$\overrightarrow{b}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{a}$-2$\overrightarrow{c}$=(1-2cosα,-2sinα),
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)=$\frac{1}{2}$-cosα+$\sqrt{3}$sinα=$\frac{1}{2}$+2sin(α-30°),
∵-1≤sin(α-30°)≤1,
∴-$\frac{3}{2}$≤$\frac{1}{2}$+2sin(α-30°)≤$\frac{5}{2}$,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)的最大值是$\frac{5}{2}$.
故答案为:$\frac{5}{2}$
点评 本题考查平面向量数量积的运算,函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{3}}}{4}$m3 | B. | $\frac{3}{4}$m3 | C. | 1m3 | D. | $\frac{1}{2}$m3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-$\sqrt{2}$,$\sqrt{2}$] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com