精英家教网 > 高中数学 > 题目详情
18.设P1P2P3…Pn是圆的内接正n边形,O为圆心,求证:$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$.

分析 分类讨论,从而分偶数与奇数进行讨论,从而证明.

解答 证明:①当n为偶数时,作图如右图,
故$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{\frac{n}{2}+1}}$=$\overrightarrow{0}$,
$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{\frac{n}{2}+2}}$=$\overrightarrow{0}$,
…,
$\overrightarrow{O{P}_{\frac{n}{2}}}$+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$,
故$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$;
②当n为奇数时,作图如右图,
取各段弧的中点,
构造正2n边形,由①知,
$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$+$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$=$\overrightarrow{0}$;
又∵$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$,
∴$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$=$\overrightarrow{0}$;
综上所述,
$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$.

点评 本题考查了分类讨论与数形结合的思想方法应用及平面向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知点A(2,0),椭圆E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆E的上焦点,直线AF的斜率为$-\frac{{\sqrt{3}}}{2}$,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于点P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|$\overrightarrow{AB}$|=8,|$\overrightarrow{BF}$|=6,cos∠ABF=$\frac{3}{4}$,则C的离心率的值是6-2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P(x,y)满足约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≤3}\end{array}\right.$,则点P对应的区域与坐标轴围成的封闭图形面积为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在△ABC中,点D是BC上一点,且$\overrightarrow{BD}$=λ$\overrightarrow{DC}$,过点D的直线分别交直线AB、AC于不同的两点M、N,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AM}$,$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AN}$,则λ的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若方程x3-3ax+2=0(a>0)有三个不同的实根,则实数a的取值范围为(  )
A.a>0B.0<a<1C.1<a<3D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则$\frac{{a}^{2}+{e}^{2}}{2b}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).
(1)设bn=an+1+λan,是否存在实数λ,使数列{bn}为等比数列?若存在,求出λ的值,若不存在,请说明理由;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,则z=2x+y的最小值为1.

查看答案和解析>>

同步练习册答案