分析 利用向量坐标运算性质、向量垂直与数量积的关系即可得出.
解答 解:∵$\overrightarrow a$⊥$\overrightarrow b$,∴$\overrightarrow a$•$\overrightarrow b$=4-2m=0,解得m=2.
∴$\overrightarrow a$=(4,2),
∴$\overrightarrow a$+2$\overrightarrow b$=(6,-2),
∴|$\overrightarrow a$+2$\overrightarrow b$|=$\sqrt{{6}^{2}+(-2)^{2}}$=2$\sqrt{10}$.
故答案为:2$\sqrt{10}$.
点评 本题考查了向量坐标运算性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $4\sqrt{2}$ | C. | 4 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com