精英家教网 > 高中数学 > 题目详情
16.已知一个圆台的上、下底面半径分别为2cm,4cm,高为6cm,则圆台的体积为56π.

分析 直接把已知代入圆台体积公式求解.

解答 解:设圆台的上、下底面半径分别为r,R,高为h,则r=2cm,R=4cm,h=6cm.
∴圆台的体积V=$\frac{1}{3}πh({r}^{2}+rR+{R}^{2})=\frac{1}{3}π×6({2}^{2}+2×4+{4}^{2})$=56π.
故答案为:56π.

点评 本题考查圆台体积的求法,关键是熟记圆台体积公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.样本容量为1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为680.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若二次函数f(x)的图象经过点(4,3),其在x轴上截得的线段长为2,并且对任意的x∈R,都有f(2-x)=f(x+2).
(1)求f(x)的解析式.
(2)若不等式f(x)>2x+m在x∈[-1,1]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法正确的是(  )
A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直
C.圆台的母线与轴平行D.球的直径必过球心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b>0,a+2b=1,则t=$\frac{1}{a}$+$\frac{1}{b}$的最小值是(  )
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.1+2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)的定义域为{x|x∈R,且x≠0},且满足f(x)-f(-x)=0,当x>0时,f(x)=lnx-x+1,则函数y=f(x)的大致图象为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若等边三角形ABC的边长为2,N为AB的中点,且AB上一点M满足$\overrightarrow{CM}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,则当$\frac{1}{x}$+$\frac{4}{y}$取最小值时,$\overrightarrow{CM}$•$\overrightarrow{CN}$=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=λcos2(ωx+$\frac{π}{6}$)-3(λ>0,ω>0)的最大值为2,最小正周期为$\frac{2π}{3}$.
(1)求函数y=f(x)的解析式;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(3,m)$,若向量$(2\overrightarrow a-\overrightarrow b)$与向量$\overrightarrow b$共线,则$|{\overrightarrow b}|$=(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{5}$C.$\frac{{3\sqrt{7}}}{2}$D.$3\sqrt{7}$

查看答案和解析>>

同步练习册答案