精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若焦点F(c,0)关于渐近线y=$\frac{b}{a}$x的对称点在另一条渐近线y=-$\frac{b}{a}$x上,则双曲线的离心率为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

分析 首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=$\frac{b}{a}$x的对称点在另一条渐近线y=-$\frac{b}{a}$x上,可得直角三角形,即可求出双曲线的离心率.

解答 解:由题意,F1(-c,0),F2(c,0),
设一条渐近线方程为y=$\frac{b}{a}$x,则F1到渐近线的距离为$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b.
设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,
又焦点F(c,0)关于渐近线y=$\frac{b}{a}$x的对称点在另一条渐近线y=-$\frac{b}{a}$x上,
∴OA∥F2M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2
∴c=2a,∴e=2.
故选:B.

点评 本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)的图象为一条连续不断的曲线,f(1+x)=f(1-x),f(1)=a,且当0<x<1时,f(x)的导函数f′(x)满足:f′(x)<f(x),则f(x)在[2015,2016]上的最大值为(  )
A.aB.0C.-aD.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)在C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2),使得A,B到l0的距离dA,dB满足:$\frac{{d}_{A}}{{d}_{B}}$=$\frac{|PA|}{|PB|}$恒成立?若存在,求x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆C的中心在原点,它的长半轴长、短半轴长、半焦距构成等差数列,且与双曲线C′:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1共焦点,则椭圆C的标准方程是(  )
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=2,求$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,则函数F(x,y)=4x+y的最大值与最小值的差为(  )
A.24B.25C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂要建造一个长方体形无盖贮水池,其容积为4800m3,深为3m,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,设长方体底面长为xm,由于地形限制,0<x≤a,水池总造价为f(x)元.
(1)求f(x)的解析式;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设平行四边形ABCD中,三个顶点分别是A(-1,0)、B(-2,3)、C(2,4),求顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设三棱锥O-ABC的各条棱长均为1,点M,N分别为OA,BC的中点,则$\overrightarrow{MN}$•$\overrightarrow{OB}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.0D.1

查看答案和解析>>

同步练习册答案