精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足:a1=-1,an+1=2an+3n-4(n∈N*),求数列{an}的通项公式.

分析 把已知的数列递推式变形,得到数列{an+1-an+3}是以1为首项,以2为公比的等比数列,写出等比数列的通项公式后结合an+1=2an+3n-4(n∈N*)求数列{an}的通项公式.

解答 解:由an+1=2an+3n-4,得
an+2=2an+1+3(n+1)-4,
两式作差得:an+2-an+1=2an+1-2an+3,
则$\frac{{a}_{n+2}-{a}_{n+1}+3}{{a}_{n+1}-an+3}=2$,
又a1=-1,∴a2=-3,
a2-a1+3=-3+1+3=1.
∴数列{an+1-an+3}是以1为首项,以2为公比的等比数列,
则${a}_{n+1}-{a}_{n}+3={2}^{n-1}$,
即2an+3n-4-${a}_{n}+3={2}^{n-1}$,解得${a}_{n}={2}^{n-1}-3n+1$.

点评 本题考查了数列递推式,考查了等比关系的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知矩阵A=$(\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array})$.
(1)求A的逆矩阵A-1
(2)求矩阵A的特征值λ1、λ2和对应的一个特征向量$\overrightarrow{{α}_{1}}$、$\overrightarrow{α_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为Q(a,b),半径为1,则(a-x12+(b-y12=1是圆O1与圆O2相切的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={-1,0,1,2,3},N={-2,0},则下列结论正确的是(  )
A.N⊆MB.M∩N=NC.M∪N=MD.M∩N={0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”

(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷读书迷合计
15
45
合计
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,设h(x)=|f(x-1)|+g(x-1),则下列结论中正确的是(  )
A.h(x)关于(1,0)对称B.h(x)关于(-1,0)对称C.h(x)关于x=1对称D.h(x)关于x=-1对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l,m和平面α,β,下列命题中正确的是(  )
A.若l∥α,l∥β,则α∥βB.若l∥α,m?α,则l∥mC.若α⊥β,l∥α,则l⊥βD.若l⊥α,m?α,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b∈R,则“a2+b2≤1”是“ab≤$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知2a=b+c,sin2A=sinC•sinB,判断三角形形状.

查看答案和解析>>

同步练习册答案