精英家教网 > 高中数学 > 题目详情
15.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”

(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷读书迷合计
15
45
合计
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

分析 (1)利用频率分布直方图,直接求出x,然后求解读书迷人数.
(2)利用频率分布直方图,写出表格数据,利用个数求出K2,判断即可.

解答 解:(1)由已知可得:(0.01+0.02+0.03+x+0.015)*10=1,可得x=0.025,…(2分)
因为( 0.025+0.015)*10=0.4,将频率视为概率,
由此可以估算出全校3000名学生中读书迷大概有1200人; …(4分)
(2)完成下面的2×2列联表如下

非读书迷读书迷合计
401555
202545
合计6040100
…(8分)
${K}^{2}=\frac{100(40×25-15×20)^{2}}{60×40×55×45}$≈8.249,…(10分)
VB8.249>6.635,
故有99%的把握认为“读书迷”与性别有关. …(12分)

点评 本题考查频率分布直方图的应用,独立性检验的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是各项均为正数的等比数列,满足a3=8,a3-a2-2a1=0.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)记bn=log2an,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知 {an}是各项都为正数的数列,其前 n项和为 Sn,且Sn为an与$\frac{1}{a_n}$的等差中项.
(Ⅰ)求证:数列{Sn2}为等差数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=$\frac{{{{(-1)}^n}}}{a_n}$,求{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为(  )
A.11πB.C.$\frac{10π}{3}$D.$\frac{40π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.投掷两枚骰子,则点数之和是6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{2}{15}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=-1,an+1=2an+3n-4(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则f[f(-2)]=34,不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数变量xy满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤0}\\{mx-\frac{1}{2}y-1≤0}\end{array}\right.$,且目标函数z=3x-y的最大值为4,则实数m的值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正四棱锥S-ABCD中,每条侧棱的长都等于底边的长,P为侧棱SD上的动点.
(1)求证:平面PAC⊥平面SBD;
(2)若P为SD的中点,求异面直线SB与PC所成角的余弦值.

查看答案和解析>>

同步练习册答案