精英家教网 > 高中数学 > 题目详情
6.已知 {an}是各项都为正数的数列,其前 n项和为 Sn,且Sn为an与$\frac{1}{a_n}$的等差中项.
(Ⅰ)求证:数列{Sn2}为等差数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=$\frac{{{{(-1)}^n}}}{a_n}$,求{bn}的前100项和.

分析 (Ⅰ)利用已知条件化简出${S}_{n}^{2}-{S}_{n-1}^{2}=1$,即可说明$\{S_n^{2}\}$是首项为1,公差为1的等差数列.
(Ⅱ) 求出$S_n^{2}=1+n-1=n$,通过an=Sn-Sn-1(n≥2求出通项公式.
(Ⅲ)化简${b}_{n}=\frac{{(-1)}^{n}}{{a}_{n}}$,直接求出前100项和即可.

解答 (本小题满分12分)
解:(Ⅰ)由题意知$2{S_n}={a_n}+\frac{1}{a_n}$,即$2{S_n}{a_n}-{a_n}^2=1$,①----------------------(1分)
当n=1时,由①式可得S1=1;----------------------(2分)
又n≥2时,有an=Sn-Sn-1,代入①式得$2{S_n}({S_n}-{S_{n-1}})-{({S_n}-{S_{n-1}})^2}=1$
整理得${S}_{n}^{2}-{S}_{n-1}^{2}=1$.----------------------(3分)
∴$\{S_n^{2}\}$是首项为1,公差为1的等差数列.----------------------(4分)
(Ⅱ) 由(Ⅰ)可得$S_n^{2}=1+n-1=n$,----------------------(5分)
∵{an}是各项都为正数,∴${S_n}=\sqrt{n}$,----------------------(6分)
∴${a_n}={S_n}-{S_{n-1}}=\sqrt{n}-\sqrt{n-1}$(n≥2),----------------------(7分)
又${a_1}=S_1^{\;}=1$,∴${a_n}=\sqrt{n}-\sqrt{n-1}$.----------------------(8分)
(Ⅲ)${b_n}=\frac{{{{(-1)}^n}}}{a_n}=\frac{{{{(-1)}^n}}}{{\sqrt{n}-\sqrt{n-1}}}={(-1)^n}({\sqrt{n}+\sqrt{n-1}})$,----------------------(10分)${T_{100}}=-1+(\sqrt{2}+1)-(\sqrt{3}+\sqrt{2})+…-(\sqrt{99}+\sqrt{98})+(\sqrt{100}+\sqrt{99})=10$
∴{bn}的前100项和T100=10.----------------------(12分)

点评 本题考查数列的递推关系式的应用,通项公式的求法,数列求和,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=2x-(k2-3)•2-x,则k=2是函数f(x)为奇函数的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个几何体的三视图,则这个几何体的体积为$8+\frac{2}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)+${∫}_{0}^{1}$f(x)dx=x,则${∫}_{0}^{1}$f(x)dx=.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在区间[-2,4]上随机取一个点x,若x满足x2≤m的概率为$\frac{1}{4}$,则m=$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设P(x1,y1)是圆O1:x2+y2=9上的点,圆O2的圆心为Q(a,b),半径为1,则(a-x12+(b-y12=1是圆O1与圆O2相切的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”

(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷读书迷合计
15
45
合计
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)若对任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案