精英家教网 > 高中数学 > 题目详情
17.如图是一个几何体的三视图,则这个几何体的体积为$8+\frac{2}{3}π$.

分析 利用三视图判断组合体的现在,利用三视图数据求解即可.

解答 解:由题意可知几何体是下部为棱长为2的正方体,上部是半径为1的半球,
几何体的体积由两部分组成,即:$2×2×2+\frac{2π}{3}×{1}^{3}$=$8+\frac{2}{3}π$.
故答案为:$8+\frac{2}{3}π$.

点评 本题考查三视图与几何体的直观图的关系,几何体的体积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.P是抛物线上x2=4y上的动点,Q(0,m)是定点,以PQ为直径的圆始终与直线y=0相切,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$,$\overrightarrow{b}$不共线,$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,若A,B,D三点不共线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是各项均为正数的等比数列,满足a3=8,a3-a2-2a1=0.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)记bn=log2an,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆O:x2+y2=1,直线l:ax+by+c=0,则a2+b2=c2是圆O与直线l相切的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在五面体ABCDEF中,△EAD为正三角形,四边形ABCD为平行四边形,EF∥AB,∠DAB=60°,AB=2AD=4.
(1)若G是FC的中点,求证:AF∥平面GBD;
(2)若二面角E-AD-B为45°,$AF=\sqrt{6}$,求直线AF与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{x^2}{2}-\frac{y^2}{4}$=1的顶点到其渐近线的距离为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知 {an}是各项都为正数的数列,其前 n项和为 Sn,且Sn为an与$\frac{1}{a_n}$的等差中项.
(Ⅰ)求证:数列{Sn2}为等差数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=$\frac{{{{(-1)}^n}}}{a_n}$,求{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则f[f(-2)]=34,不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

查看答案和解析>>

同步练习册答案