精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,则z=x-3y的最大值为(  )
A.-2B.4C.-6D.-8

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:作出可行域如图,
由目标函数得$y=\frac{1}{3}x-\frac{1}{3}z$,
结合图象知z在(-2,2)处截距离最大,
z取得最小值-8.
故选D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在无穷等比数列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,则a1的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({0,\frac{1}{2}})∪$$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程4x-4•2x-5=0的解是(  )
A.x=0或x=log25B.x=-1或x=5C.x=log25D.x=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知方程x2+(m-3)x+m=0有两个不等正实根,求实数m的取值范围.
(2)不等式(m2-2m-3)x2-(m-3)x-1<0对任意x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{2π}{3}$,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,则$|{\overrightarrow a+2\overrightarrow b}|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合P={x|x<2},集合Q={y|y<1},则P与Q的关系为(  )
A.P⊆QB.Q⊆PC.P=QD.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{{a•{2^x}-2+a}}{{{2^x}+1}},\;\;a∈R$.
(1)试判断f (x)的单调性,并证明你的结论;
(2)若f (x)为定义域上的奇函数,求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若f(x)=2x+3,则f(3)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow{a}$=(3,4)与向量$\overrightarrow{b}$=(1,0)的夹角大小为arccos$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案