精英家教网 > 高中数学 > 题目详情
若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a、b.
考点:集合的相等
专题:集合
分析:由集合A={-1,3}=B={x|x2+ax+b=0},故-1,3为方程x2+ax+b=0两个根,由韦达定理可得实数a、b的值.
解答: 解:∵集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,
故-1,3为方程x2+ax+b=0两个根,
由韦达定理可得:-1+3=2=-a,-1×3=-3=b,
即a=-2,b=-3
点评:本题考查的知识点是集合相等,其中根据已知得到-1,3为方程x2+ax+b=0两个根,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n是两条异面直线,P是空间任一点.下列命题中正确的是(  )
A、过m且与n平行的平面有且只有一个
B、过m且与n垂直的平面有且只有一个
C、m与n所成的角的范围是(0,π)
D、过P与m、n均平行的平面有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∪B=A,求a的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
(1)(x+a)(-x+1)>0;
(2)(ax+3)(x-1)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R且a≠2,定义在区间(-b,b)内的函数f(x)=lg
1+ax
1+2x
是奇函数.
(1)求实数b的取值范围;
(2)判断函数f(x)在区间(-b,b)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1的左,右焦点分别为F1,F2,点P是椭圆上一点,且∠F1PF2=α.求△F1PF2的面积.(用a、b、α表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2-a)x+4,a∈R
(1)若a=8,求不等式f(x)>0的解;
(2)若f(x)=0有两根,一根小于2,另一根大于3且小于4,求实数a的取值范围;
(3)若函数f(x)=x2+(2-a)x+4在区间[1,3]内有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ex

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)过点P(0,
4
e2
)作直线l与曲线y=f(x)相切,求证:这样的直线l至少有两条,且这些直线的斜率之和m∈(
e2-1
e2
2e3-1
e2
).

查看答案和解析>>

同步练习册答案