精英家教网 > 高中数学 > 题目详情
2.已知等差数列{an}前n项和为Sn,且${S_n}={n^2}+c$(n∈N*).
(Ⅰ) 求c,an
(Ⅱ) 若${b_n}=\frac{a_n}{2^n}$,求数列{bn}前n项和Tn

分析 (1)利用数列递推关系、等差数列的通项公式即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵${S_n}={n^2}+c$,
∴a1=S1=1+c,a2=S2-S1=(4+c)-(1+c)=3,a3=S3-S2=5…(2分)
又∵{an}等差数列,∴6+c=6,c=0;    …(3分)
d=3-1=2;a1=S1=1+c=1,…(4分)
∴an=1+2(n-1)=2n-1…(5分)
(2)${b_n}=\frac{2n-1}{2^n}$…(6分)
${T_n}=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+…+\frac{2n-3}{{{2^{n-1}}}}+\frac{2n-1}{2^n}$…①…(7分)
$\frac{1}{2}{T_n}=\begin{array}{l}{\;}&{\frac{1}{2^2}+\frac{3}{2^3}+\frac{5}{2^4}+…+\frac{2n-3}{2^n}+\frac{2n-1}{{{2^{n+1}}}}}\end{array}$…②…(8分)
①-②得  $\frac{1}{2}{T_n}=\frac{1}{2}+2(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…+\frac{1}{2^n})-\frac{2n-1}{{{2^{n+1}}}}$…(9分)
$\frac{1}{2}{T_n}=\frac{1}{2}+2×\frac{{\frac{1}{2^2}[1-{{(\frac{1}{2})}^{n-1}}]}}{{1-\frac{1}{2}}}-\frac{2n-1}{{{2^{n+1}}}}$…(10分)
$\frac{1}{2}{T_n}=\frac{3}{2}-\frac{2n+3}{{{2^{n+1}}}}$…1(1分)
${T_n}=3-\frac{2n+3}{2^n}$…(12分)

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知y=f(x+1)+2是定义域为R的奇函数,则f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为(  )
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了得到函数$y=sin({2x-\frac{π}{6}})$的图象,可以将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合$M=\{x|{x^2}=x\},N=\{x|\frac{x}{x-1}≥0\}$,则M∩N=(  )
A.B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人 来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如图所示一组数据的茎叶图中,有一个数字被污染后而模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABO中,点C是点B关于点A的对称点,点D是OB靠近B的三等分点,DC与OA交于E点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OC}$,$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过原点的直线l与圆C:x2+y2-6x+5=0相交于不同的两点A、B,且线段AB中点坐标为(2,$\sqrt{2}$),则弦长为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案