分析 由正弦定理可求sinC的值,结合C的范围可求C,利用三角形内角和定理可求B,由正弦定理及比例的性质即可计算得解.
解答 解:∵$∠A=\frac{2π}{3}$,$a=\sqrt{3}c$,
∴由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,可得:$\frac{\sqrt{3}c}{\frac{\sqrt{3}}{2}}$=$\frac{c}{sinC}$,解得:sinC=$\frac{1}{2}$,C为锐角,可得C=$\frac{π}{6}$,
∴由A+B+C=π,可得:B=$\frac{π}{6}$,
∴$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{sin\frac{2π}{3}}{sin\frac{π}{6}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题主要考查了正弦定理,三角形内角和定理及比例的性质的综合应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
| P(K2≥k) | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{14}{3}π$ | B. | $\frac{7}{3}π$ | C. | $\frac{28}{3}π$ | D. | 14π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{50}$ | C. | $\frac{1}{100}$ | D. | $\frac{1}{200}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com