精英家教网 > 高中数学 > 题目详情
16.已知圆锥的侧面展开图是一个半圆;
(1)求圆锥的母线与底面所成的角;
(2)过底面中心O1且平行于母线AB的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p的抛物线,求圆锥的全面积;
(3)过底面点C作垂直且于母线AB的截面,若截面与圆锥侧面的交线是长轴为2a的椭圆,求椭圆的面积(椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的面积S=πab).

分析 (1)根据侧面展开图的特征列方程得出底面半径和母线的关系,从而得出母线与底面所成的角;
(2)根据抛物线的一条弦为圆锥底面直径得出底面半径和p的关系,从而可得圆锥的面积;
(3)利用三角形相似和圆锥的特点得出椭圆的长轴,短轴和底面半径的关系,从而可得长短轴的关系,得出答案.

解答 解:(1)设圆锥的底面半径为r,母线长为l,
则圆锥侧面展开图的半径为l,弧长为2πr,
∵圆锥的侧面展开图是一个半圆,∴2πr=πl,
∴l=2r,∴圆锥的轴截面为等边三角形,
∴圆锥的母线与底面所成的角为$\frac{π}{3}$.
(2)设抛物线的顶点M,则M为AC的中点,
设抛物线方程为y2=2px,把y=r代入抛物线方程得x=$\frac{{r}^{2}}{2p}$,
∴OM=$\frac{{r}^{2}}{2p}$,于是母线l=AB=2OM=$\frac{{r}^{2}}{p}$,
又由(1)可知l=2r,即$\frac{{r}^{2}}{p}$=2r,∴r=2p,l=4p,
∴圆锥的全面积为πr2+πrl=12πp2
(3)设AB的中点为N,则N和C为椭圆的长轴顶点,
取CN的中点P,则P为椭圆的中心,连接AP并延长,交BC于Q,过Q作QR⊥BC,交圆锥底面圆周于R,
则CN=2a=$\sqrt{3}$r,即r=$\frac{2a}{\sqrt{3}}$,
过N作NS∥BC交AQ于S,由△NPS∽△CPR可知QC=NS,又$\frac{NS}{BQ}=\frac{1}{2}$,
∴Q为BC靠近C的三等分点,
∴QR=$\frac{2\sqrt{2}r}{3}$,AQ=$\frac{2\sqrt{7}r}{3}$,AP=$\frac{\sqrt{7}r}{2}$,
∴$\frac{b}{QR}$=$\frac{AP}{AQ}$,∴b=$\frac{\sqrt{2}}{2}$r,即b=$\frac{\sqrt{6}}{3}$a,
∴椭圆面积S=πab=$\frac{{\sqrt{6}π{a^2}}}{3}$.

点评 本题考查了圆锥的结构特征,圆锥的截面曲线,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设函数f′(x)是奇函数y=f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)+f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是(  )
A.曹雪芹、莎士比亚、雨果B.雨果、莎士比亚、曹雪芹
C.莎士比亚、雨果、曹雪芹D.曹雪芹、雨果、莎士比亚

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点(1,1)和(-2,4)的直线的一般式方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,$∠A=\frac{2π}{3}$,$a=\sqrt{3}c$,则$\frac{a}{b}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=sin3x+acos3x的图象关于$x=-\frac{π}{9}$对称,则a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足不等式组$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤2}\end{array}\right.$,则目标函数z=x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,有下列结论:
①若a2=b2+c2+bc,则∠A为60°;
②若a2+b2>c2,则△ABC为锐角三角形;
③若A:B:C=1:2:3,则a:b:c=1:2:3,
④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值范围为(2,2$\sqrt{2}$)
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是(  )
A.$\frac{1}{27}$B.$\frac{2}{27}$C.$\frac{2}{81}$D.$\frac{8}{81}$

查看答案和解析>>

同步练习册答案