精英家教网 > 高中数学 > 题目详情
4.经过点(1,1)和(-2,4)的直线的一般式方程是x+y-2=0.

分析 写出直线的两点式方程,化为一般式即可.

解答 解:由题意可得直线的两点式方程为:$\frac{y-1}{4-1}$=$\frac{x-1}{-2-1}$,
化为一般式可得:x+y-2=0
故答案为:x+y-2=0

点评 本题考查直线的两点式方程,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a1=1,前100项和S100=10000.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定义在R上的函数,
(1)若f(x)≥f(1)对所有x∈R都成立,求证:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求当x取何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在一圆柱中挖去一圆锥所得的工艺部件的三视图如图所示,则此工艺部件的表面积为(  )
A.(7+$\sqrt{5}$)πB.(7+2$\sqrt{5}$)πC.(8+$\sqrt{5}$)πD.(8+2$\sqrt{5}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图(1),五边形PABCD是由一个正方形与一个等腰三角形拼接而成,其中∠APD=120°,AB=2,现将△PAD进行翻折,使得平面PAD⊥平面ABCD,连接PB,PC,所得四棱锥P-ABCD如图(2)所示,则四棱锥P-ABCD的外接球的表面积为(  )
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若长度为x2+4,4x,x2+6的三条线段可以构成一个锐角三角形,则x取值范围是x$>\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆锥的侧面展开图是一个半圆;
(1)求圆锥的母线与底面所成的角;
(2)过底面中心O1且平行于母线AB的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p的抛物线,求圆锥的全面积;
(3)过底面点C作垂直且于母线AB的截面,若截面与圆锥侧面的交线是长轴为2a的椭圆,求椭圆的面积(椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的面积S=πab).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若(ax+2)4展开式中含有x3项的系数为8则$\int_a^{e^2}{\frac{1}{x}dx=}$(  )
A..2B..$-\frac{1}{e^2}-1$C..$-\frac{1}{e^2}+1$D.2-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)如果关于x的不等式|x+3|+|x-2|<a的解集不是空集,求参数a的取值范围;
(Ⅱ)已知正实数a,b,且h=min{a,$\frac{b}{{a}^{2}+{b}^{2}}$},求证:0<h≤$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案