精英家教网 > 高中数学 > 题目详情
13.若(ax+2)4展开式中含有x3项的系数为8则$\int_a^{e^2}{\frac{1}{x}dx=}$(  )
A..2B..$-\frac{1}{e^2}-1$C..$-\frac{1}{e^2}+1$D.2-e

分析 根据二项式展开式的通项公式求出展开式中含有x3项的系数,求出a的值,再计算定积分的值.

解答 解:(ax+2)4展开式的通项公式为
Tr+1=${C}_{4}^{r}$•(ax)4-r•2r=${C}_{4}^{r}$•a4-r•x4-r•2r
令4-r=3,解得r=1;
∴展开式中含有x3项的系数为${C}_{4}^{1}$•a3•2=8,
解得a=1;
∴$\int_a^{e^2}{\frac{1}{x}dx=}$=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx=lnx${|}_{1}^{{e}^{2}}$=lne2-ln1=2.
故选:A.

点评 本题考查了二项式展开式的通项公式研究定积分的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若a>0,b>0,且42a+b=2ab,则a+b的最小值是(  )
A.12B.6+2$\sqrt{2}$C.6+4$\sqrt{2}$D.6+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点(1,1)和(-2,4)的直线的一般式方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=sin3x+acos3x的图象关于$x=-\frac{π}{9}$对称,则a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足不等式组$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤2}\end{array}\right.$,则目标函数z=x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=tanx在点$({\frac{π}{3},\sqrt{3}})$处的切线斜率为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,有下列结论:
①若a2=b2+c2+bc,则∠A为60°;
②若a2+b2>c2,则△ABC为锐角三角形;
③若A:B:C=1:2:3,则a:b:c=1:2:3,
④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值范围为(2,2$\sqrt{2}$)
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2$\sqrt{2}$,PC=$\sqrt{5}$,则三棱锥P-ABC外接球的表面积为10π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-2tan(2x+φ)(|φ|<π),若$f(\frac{π}{16})=-2$,则f(x)的一个单调递减区间是(  )
A.$(\frac{3π}{16},\frac{11π}{16})$B.$(\frac{π}{16},\frac{9π}{16})$C.$(-\frac{3π}{16},\frac{5π}{16})$D.$(\frac{π}{16},\frac{5π}{16})$

查看答案和解析>>

同步练习册答案